Inferring Strategic Voting
Kawai and Watanabe(2011)

Biancen Xie

Presented at Hanqing Advanced Institute of Economics and Finance
xiebiancen@hotmail.com
Outline

• Introduction
• Model
• Data
• Empirical Analysis
• Results and Counterfactual Experiment
• Conclusion
Main question solved in this paper:
• Can we identify the existence and fraction of strategic voters?

Empirical methodologies used in the past studies:
• Aggregate regression
• Self-reporting survey
• Direct measurement
• Laboratory Experiment
Introduction

Definition

• Sincere voting: voting according to preferences
• Strategic voting: voting conditioning on pivotality
• Misaligned voting: voting for a candidate other than the most-preferred
• Pivotality: the state of having the decisive vote

the set of misaligned voters is only a subset of the set of strategic voters.
Model

Environment:
- Plural-rule election
- K candidates for one seat in one district
- M municipalities in an electoral district

Voter’s utility function

$$u_{nk} = u(x_n, z_k) + \xi_{km} + \xi_{nk}$$

- x_n: Voter n’s characteristic
- z_k: Candidate k’s characteristics
- ξ_{km}: Candidate k’s shock on municipality m
- ξ_{nk}: Voter n’s preference shock
Model

Voter’s strategies:

• Sincere: vote for candidate k IFF $u_{nk} \geq u_{nl} \forall l$
• Strategic: vote for candidate k IFF $u_{nk}(T_n) \geq u_{nl}(T_n) \forall l$

Expected utility from voting for candidate k:

$$u_{nk}(T_n) = \frac{1}{2} \sum_{l \in \{1..K\}} T_{n,kl} (u_{nk} - u_{nl})$$

• $T_{n,kl}$: Voter n ’s belief that his vote would be pivotal: belief that candidate k and l would be tied for the first place or that k will be one vote behind.
Model

Further assumptions

- Beliefs are common across all voters in the same district (Beliefs over tie probabilities are common across the same district)
- Denote the type of voter n in municipality m by a random variable:

$$\alpha_{nm} = \begin{cases}
0 & \text{if voter } n \text{ is sincere} \\
1 & \text{if voter } n \text{ is strategic}
\end{cases}$$

- The probability that voter n in municipality m is a strategic voter (α_m) is drawn iid from a conditional distribution $F_{\alpha} (\cdot | w)$ where w reflects the closeness based on election forecasts.
Model

Aggregating vote share:

\[V_{k,m}^{SIN} = \frac{\sum_{n=1}^{N_m} (1 - \alpha_{nm}) \cdot 1\{u_{nk} \geq u_{nl}, \forall l\}}{\sum_{n=1}^{N_m} (1 - \alpha_{nm})} \]

\[V_{k,m}^{SIR}(T) = \frac{\sum_{n=1}^{N_m} \alpha_{nm} \cdot 1\{\underline{u}_{nk} \geq \underline{u}_{lk}, \forall l\}}{\sum_{n=1}^{N_m} \alpha_{nm}} \]

\[V_{k,m}(T) = \frac{\sum_{n=1}^{N_m} \alpha_{nm} \cdot V_{k,m}^{SIR}(T)}{N_m} + \frac{\sum_{n=1}^{N_m} (1 - \alpha_{nm}) \cdot V_{k,m}^{SIN}(T)}{N_m} \]
Data

General information
• Source: Japanese House Representatives election
• Vote share and candidate characteristics (*from ATES*)
• Demographic information (*from Social and Demographic Statistics of Japan*)
• Data selection criteria:
 • 3 or 4 candidates
 • No recent mergers
 • Minimum of 2 municipalities
Data

<table>
<thead>
<tr>
<th></th>
<th>mean</th>
<th>st. dev.</th>
<th>min</th>
<th>max</th>
<th># obs</th>
</tr>
</thead>
<tbody>
<tr>
<td># of municipalities per district</td>
<td>9.23</td>
<td>7.27</td>
<td>2</td>
<td>36</td>
<td>159</td>
</tr>
<tr>
<td>3-candidate district</td>
<td>8.72</td>
<td>7.03</td>
<td>2</td>
<td>36</td>
<td>144</td>
</tr>
<tr>
<td>4-candidate district</td>
<td>14.13</td>
<td>8.02</td>
<td>3</td>
<td>36</td>
<td>15</td>
</tr>
<tr>
<td>winner’s vote share (%)</td>
<td>51.72</td>
<td>6.83</td>
<td>28.98</td>
<td>73.62</td>
<td>159</td>
</tr>
<tr>
<td>3-candidate district</td>
<td>52.90</td>
<td>5.70</td>
<td>36.03</td>
<td>73.62</td>
<td>144</td>
</tr>
<tr>
<td>4-candidate district</td>
<td>40.46</td>
<td>6.69</td>
<td>28.98</td>
<td>55.89</td>
<td>15</td>
</tr>
<tr>
<td>winning margin (%)</td>
<td>13.53</td>
<td>10.23</td>
<td>0.06</td>
<td>53.92</td>
<td>159</td>
</tr>
<tr>
<td>3-candidate district</td>
<td>14.05</td>
<td>10.17</td>
<td>0.17</td>
<td>53.92</td>
<td>144</td>
</tr>
<tr>
<td>4-candidate district</td>
<td>8.50</td>
<td>9.73</td>
<td>0.06</td>
<td>35.50</td>
<td>15</td>
</tr>
<tr>
<td>margin between 2nd and 3rd (%)</td>
<td>28.51</td>
<td>9.67</td>
<td>0.00</td>
<td>43.32</td>
<td>159</td>
</tr>
<tr>
<td>3-candidate district</td>
<td>30.39</td>
<td>7.65</td>
<td>0.00</td>
<td>43.32</td>
<td>144</td>
</tr>
<tr>
<td>4-candidate district</td>
<td>10.45</td>
<td>8.51</td>
<td>0.57</td>
<td>23.32</td>
<td>15</td>
</tr>
<tr>
<td>pre-election forecast on closeness</td>
<td>2.33</td>
<td>0.81</td>
<td>1</td>
<td>4</td>
<td>159</td>
</tr>
<tr>
<td>3-candidate district</td>
<td>2.36</td>
<td>0.82</td>
<td>1</td>
<td>4</td>
<td>144</td>
</tr>
<tr>
<td>4-candidate district</td>
<td>2.07</td>
<td>0.59</td>
<td>1.5</td>
<td>3.5</td>
<td>15</td>
</tr>
</tbody>
</table>
The situation might be very different in 4-candidate districts:

- Voters may have beliefs in **three way ties** rather than **two-way ties**.
- Since the prediction would be very **ambiguous** in a 4-candidate district, the common belief might be violated.
Empirical Analysis

Specification of the model

\[u_{nk} = u(x_n, z_k, \theta^{PREF}) + \xi_{km} + \varepsilon_{nk} = -(\theta^{ID} x_n - \theta^{POS} z_k^{POS})^2 + \theta^{QLTY} z_k^{QLTY} + \xi_{km} + \varepsilon_{nk} \]

voters’ ideology is assumed to be a function of demographics

- \(x_n \): voter characteristics
- \(z_{km} = \{z_k^{POS}, z_{km}^{QLTY}\} \): Candidate characteristics
 - \(z_k^{POS} \): Ideological characteristics
 - \(z_{km}^{QLTY} \): Non-ideological characteristics
- \(\theta^{PREF} \): vector of preference parameters
Empirical analysis

Partial Identification of preference parameters

- Two kinds of restrictions:
 - Restriction (I): voters do not vote for their least-preferred candidate
 - Restriction (II): common belief within one district.

- With two restrictions, the parameters can only be partially identified.

Partial Identification of the fraction of the strategic voters

- Vary the identified set of θ^{PREF} to trace out the identified set of the parameters that determine the extent of strategic voting
- When there is a large number of strategic voters, the actual vote share can systematically diverge from the predicted outcome.
Empirical analysis

Parameters estimated

- θ^{PREF}: Preference parameters
- $(\theta_{\alpha_1}, \theta_{\alpha_2})$: Parameters that determine the distribution of strategic voters

Estimation steps

- For some district, regress the vote share data of candidate k in each municipality on the demographic data to obtain coefficients.
- Fix preference parameters, beliefs, fraction of strategic voters and municipality shocks; compute the simulated vote share.
- Regress the simulated vote share on demographic data to obtain regression coefficients.
- Vary beliefs to obtain minimum and maximum for the coefficients.
- Integrate out the fraction of strategic voters and municipality shocks.
- Find out the moment inequality and apply Pakes, Porter, Ho, and Ishii (2007)
Main Results

Parameter estimates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ_{const}</td>
<td>$[-0.556, -0.543]$</td>
</tr>
<tr>
<td>θ_{1}</td>
<td>$[-0.028, -0.025]$</td>
</tr>
<tr>
<td>θ_{2}</td>
<td>$[-0.109, -0.104]$</td>
</tr>
<tr>
<td>θ_{above65}</td>
<td>$[0.136, 0.141]$</td>
</tr>
<tr>
<td>θ_{YUS}</td>
<td>$[-0.701, -0.695]$</td>
</tr>
<tr>
<td>θ_{JCP}</td>
<td>$[-2.495, -2.482]$</td>
</tr>
<tr>
<td>θ_{DPJ}</td>
<td>$[-1.975, -1.969]$</td>
</tr>
<tr>
<td>θ_{const}</td>
<td>$[2.629, 2.635]$</td>
</tr>
<tr>
<td>θ_{2}</td>
<td>$[-0.637, -0.625]$</td>
</tr>
<tr>
<td>θ_{2}</td>
<td>$[0.339, 0.349]$</td>
</tr>
<tr>
<td>θ_{above65}</td>
<td>$[-0.056, -0.052]$</td>
</tr>
</tbody>
</table>

Voters with lower income, fewer years of schooling prefer LDP, YUS.

Voters with lower income, longer years of schooling prefer pro-market candidates

ideology – JCP	1.97	0.36	1	2.75	154
ideology – DPJ	3.10	0.60	1	4.50	159
ideology – LDP	3.12	0.61	1.25	4.67	159
ideology – YUS	2.55	0.45	1.25	3.25	20
Main Results

The fraction of strategic voters and misaligned voters

- The authors estimate the fraction of strategic voters to be [63.4%, 84.9%]
- The authors determine the fraction of misaligned voters to be [1.4%, 4.2%]

Counterfactual Experiment: Sincere voting under plurality rule

- The change in vote share is small (due to a small fraction of misaligned voter)
- Change in the number of seats is considerable (due to small winning margin)
Conclusion

• The authors find a much larger fraction of strategic voters than in the past studies.
• The authors consider including abstention in the future method.
• My suggestions:
 • Drop the sample of 4-candidate districts and go through the estimation again to see if there is a big difference.
 • Find more accurate indicators for individual ideologies. (i.e data from local surveys)