Auctions: problems

1. Which random variables are the expectations taken over in (all from Milgrom and Weber (1982)):
 - The proof on the top of p. 1101?
 - The series of equations on p. 1106?

2. Implement the Guerre, Perrigne, and Vuong (2000) procedure for an IPV auction model:
 - Generate 1000 valuations $x \sim U[0, 1]$. Recall (as derived in lecture notes) the equilibrium bid function in this case is
 \[b(x) = \frac{N - 1}{N} \cdot x. \]
 - For 500 of the valuations, split them into 125 4-bidder auctions. For each of these valuations, calculate the corresponding equilibrium bid.
 - For the other 500 valuations, split them into 100 5-bidder auctions. For each of these valuations, calculate the corresponding equilibrium bid.
 - For each b_i, compute the estimated valuation \tilde{x}_i using the GPV equation:
 \[
 \frac{1}{g(b_i)} = (N_i - 1) \frac{x_i - b_i}{G(b_i)}
 \]
 \[\iff x_i = b_i + \frac{G(b_i)}{(N_i - 1)g(b_i)} \]
 (where N_i denotes the number of bidders in the auction that the bid b_i is from).

 In computing the G and g functions, try
 1. Epanechnikov kernel ($\mathcal{K}(u) = \frac{3}{4}(1 - u^2)\mathbf{1}(|u| \leq 1)$)
 2. Uniform kernel ($\mathcal{K}(u) = \frac{1}{2}\mathbf{1}(|u| \leq 1)$).

 Also, try different bandwidths $h \in \{0.5, 0.1, 0.05, 0.01\}$.

 For each case, plot x vs. \tilde{x}. Can you comment on performance of the procedure for different bandwidth values?
 - Compute and plot the empirical CDF’s for the estimated valuations \tilde{x}_i, separately for $N = 4$ and $N = 5$.
3. Consider an example of a common-value model with conditionally independent signals, drawn from Matthews (1984). Namely

⇒ Pareto-distributed common values: \(v \sim g(v) = \alpha v^{-(\alpha + 1)} \), with support \(v \in [1, +\infty) \).

⇒ Conditionally independent signals: \(x|v \sim U[0, v] \).

⇒ Equilibrium bidding strategy:

\[
b(x) = \left[\frac{N - 1 + \max(1, x)^{-N}}{N} \right] \cdot \left(\frac{N + \alpha}{N + \alpha - 1} \right) \cdot \max(1, x) \tag{1}
\]

So do the following:

- Simulate the common values \(v_t \) i.i.d. from \(G(v) \), for \(t = 1, 225 \) (225 auctions).

- For each auction \(t = 1, 125 \), generate 4 signals each, where \(x_{it} \sim U[0, v_t] \), for \(i = 1, \ldots, 4 \), and \(t = 1, \ldots, 125 \).

 Then for each signal \(x_{it} \), generate the corresponding equilibrium bid \(b_{it} \) for a 4-bidder auction, using Eq. (1).

 For each bid \(b_{it} \), pick out the maximum among rivals’ bids in auction \(t \): \(b^*_{it} \equiv \max_{j \neq i} b_{jt} \).

 For each bid in the simulated 4-bidder auctions, recover the corresponding pseudovalue \(\xi(b_{it}, N_t) \), using Eq. (10) from auction lecture notes.

- For each auction \(t = 126, 225 \), generate 5 signals each, where \(x_{it} \sim U[0, v_t] \), for \(i = 1, \ldots, 5 \), and \(t = 126, \ldots, 225 \).

 As above, generate the corresponding \(b_{it}, b_{it}^* \) for each signal.

 Then, for each bid in these 5-bidder auctions, recover the pseudovalue \(\xi(b_{it}, N_t) \).

- Compute and plot the empirical CDF’s for the estimated pseudovalues \(\xi(b_{it}, N_t) \), separately for \(N_t = 4 \) and \(N_t = 5 \).

References

\(^{1} \)To simulate from any non-uniform CDF, use the “inverse-quantile” procedure. Generate \(w \sim U[0, 1] \), then transform \(v = G^{-1}(w) \). The random variable \(v \sim G(v) \).