Network bottleneck and speed of learning
Prepared for class presentation (SS211)

Jin F. Huang

May, 2013
Motivation

• How fast does information travel within a network?

• How long does it take for a community to reach consensus?

• How do we arrange a communication network so that it is more conducive to forming compromises?
Learning environment

- DeGroot’s model on learning
- Linear updating, repeated learning from neighbors
- Updating matrix

\[T = \frac{1}{2}(I + \Delta^{-1}A), \]

where \(\Delta = diag(d_1, \cdots, d_n) \), \(I \) is the identity matrix, and \(A \) is the adjacency matrix.

In words, \(i \) gives his own opinion 1/2 weight and the rest evenly distributed among his neighbors.

- Updating rule

\[b_{i}^{t+1} = \sum_{j \in N} T_{ij}b_{j}^{t} \]
An example

\[
A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \quad \Delta = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} \quad T = \begin{pmatrix} 1/2 & 1/4 & 1/4 \\ 1/4 & 1/2 & 1/4 \\ 1/4 & 1/4 & 1/2 \end{pmatrix}
\]
Convergence of long run behavior

- T has a unique stationary distribution π,

\[\pi_i = \frac{d_i}{\sum_j d_j}. \]

- For any $b^0 \in [0, 1]^N$,

\[b^\infty \triangleq T^\infty b^0 = \left(\sum_i \pi_i b^0_i \right) e, \]

where e is $(1, \cdots, 1)^{tr}$.

In words, long run behavior converges. The convergent behavior is a weighted average of the initial behavior.
Consensus time

Fix an initial behavior b_0, then $b_i^\infty = \sum_j \pi_i b_j^0$.

- Distance of two probability distributions (μ and ν)

$$||\mu - \nu|| \overset{\Delta}{=} \max_{S \subseteq N} |\mu(S) - \nu(S)|.$$

- Consensus distance

$$cd(t; T) \overset{\Delta}{=} \max_{i \in N} ||T_i^t - \pi||$$

- We look at $ct(t; T)$ because whenever $cd(t; T) < \epsilon$,

$$|b_i^t - b_i^\infty| = \left| \sum_j T_{ij}^t b_j^0 - \pi_j b_j^0 \right| \leq \sum_j |T_{ij}^t - \pi_j b_j^0| < \epsilon ||b^0||$$
Consensus time, cont.

Consensus time

\[ct(\epsilon; T) = \inf \{ t \geq 0 : cd(t; T) < \epsilon \} \]

In words, this is the amount of time that the updated behavior \(b^t \) is \(\epsilon \)-close to the long run, steady-state behavior \(b^\infty \).
Consensus time and spectral gap

• The spectral gap

\[\gamma \triangleq \lambda_1 - \lambda_2 = 1 - \lambda_2 \]

Proposition

\[-\log(2\epsilon)(\frac{1}{\gamma} - 1) \leq ct(\epsilon; T) \leq -\log(\pi_{\text{min}}\epsilon)\frac{1}{\gamma}\]
Bottleneck ratio

- Network influence j has on i

$$q(i, j) \triangleq \pi_i T_{i,j}$$

- Influence that group S_1 has on S_2

$$q(S_1, S_2) = \sum_{(i,j) \in (S_1,S_2)} \pi_i T_{i,j}$$

- Bottleneck ratio of group S

$$\Phi(S) \triangleq \frac{q(S, S^C)}{\pi(S)}$$
Bottleneck ratio, cont.

- Bottleneck ratio of the network
 \[\Phi \triangleq \min \{ \Phi(S) : S \subseteq N, \pi(S) \leq 1/2 \} \]

- It measures how much the critical group \(S^* \) is isolated from the rest of the network

- \(\Phi \) is between 0 and \(\frac{1}{2} \)

- \(\Phi = 1/2 \) for a triangle; \(\Phi = 1/n \) for a circle of even size
Bottleneck ratio and spectral gap

Proposition

\[\frac{\Phi^2}{2} \leq \gamma \leq 2\Phi \]

Corollary

\[-\log(2\varepsilon)(\frac{1}{2\Phi} - 1) \leq cT(\varepsilon; T) \leq -\log(\pi_{\min}\varepsilon)\frac{2}{\Phi^2} \]

- A large bottleneck ratio is helpful for fast information propagation
A geometric view of Φ

- Let $e(S, S^c)$ be the number of cross edges between the group S and its complement.

- Φ can also be expressed as

$$\Phi(S) = \frac{1}{2} \frac{e(S, S^c)}{\sum_{i \in S} d_i}$$

- A group would act as blockade to information exchanges if it is \textit{large} and has very few cross links.
Speed of learning for large networks

• $ct(\epsilon; T)$ is a measure of a fixed network

• What if we want to estimate the rate of learning of network that we don’t its precise structure but we know its generating process

• We look at consensus time with respect to its size

$$ct(n) \triangleq \min\{t \geq 0 : cd(t; T(n)) < 1/(2e)\},$$

where e is the natural number
Speed of learning for large networks, cont.

- $ct(n)$ is the amount of time it takes in a network of size n to reach a certain level of closeness within b^∞

Lemma

$$ct(\epsilon; T(n)) \leq \log(\epsilon^{-1}) ct(n)$$
Examples of large non-random networks

• A complete network, $\Phi = 1/4$. Then, $ct(n) \leq C \log n$

• A star, $\Phi = 1/2$. Then, $ct(n) \leq C \log n$

• A circle, $\Phi = 1/n$. Then, $ct(n) \leq C n^2 \log n$

• A dumbbell, $\Phi = 1/n^2$. Then, $ct(n) \leq C n^4 \log n$
Erdös Rényi

Erdös-Rényi $G(n, \lambda/n)$ mean that each one of the $\binom{n}{2}$ links would be deleted with probability $1 - p$ independently. If $p > 1/n$, then there is a giant component.

\textbf{Theorem}

\emph{Let the network be the Erdös-Rényi $G(n, \lambda/n)$ with $\lambda > 1$. Then for a large enough n, consensus time in the largest component is almost surely}

$$ct(n) \leq C \log^2(n).$$

\textbf{Theorem}

\emph{Let the network be the Erdös-Rényi $G(n, \lambda \log n/n)$ with $\lambda > 1$.}

$$ct(n) \leq C \log n.$$
Preferential attachment

\(PA(n, m) \): Each new node is added and connects to \(m \) neighbors. The choice of getting connected for each existing node is proportionate to its degree.

Theorem

Let the network be the Erdős-Rényi \(G(n, \lambda \log n/n) \) with \(\lambda > 1 \).

\[ct(n) \leq C \log n. \]
Small world

$NW(n, k, p)$: Starting from a circle with each agent connecting to his closest $2k$ neighbors, a link is added to each non-linking pair with probability p.

Theorem

Let the network be $NW(n, k, \lambda/n)$ with $\lambda > 1$. Then

$$ct(n) \leq C \log^2(n).$$
Island model

$IM(n, K, p_s, p_d)$: K types, p_s is the internal connecting probability, and p_d is between types

Theorem

Let $\frac{p_d}{p_s} = \frac{\lambda}{n^a}$. If $a = 0$ and $0 < \lambda < 1$, then $ct(n) \leq C \log n$. If $a, \lambda > 0 \geq 0$, then $ct(n) \leq C n^{2a} \log n$.
Conclusion

• Φ is easy to interpret, visualize, and estimate

• Φ can be used to analyze large, random networks

• Limitations
 ▶ updating is mechanical
 ▶ the bounds are not tight (for example, a dumbbell); λ₂ is a more precise measure of speed
 ▶ lower bound is mostly missing