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Note: For convenience, equation numbers continue with the numbering in the article.

Proof of Lemma 1

Proof. We need to prove that the function

B(xi) = Qne(n; q)

Z 1

�1
fne(xj�) U(xi; x)dx +Qe(n; q)

Z 1

�1
fe(xj�) U(xi; x)dx (15)

is strictly convex in xi (i.e., B00(xi) > 0) with B0(xi) < 0 for xi = �1 and B0(xi) > 0 for xi = 1

(cf. best response condition (8)). We prove it for the case in which U is twice continuously

di¤erentiable and satis�es three properties:

(i)
@2 U(xi; 
)

@x2i
> 0

(ii)
@2 U(xi; 
)

@
2
> 0

(iii)
@ U(xi; 
)

@xi
= 0 if xi = 
:

In other words, utility functions �U are smooth, strictly concave and single peaked. The

proof for linear �U ("tent preferences") follows a similar logic and we omit the details.

(Convexity) First, it is straightforward to see that B00(xi) > 0:

B00(xi) = Qne(n; q)

Z 1

�1
fne(xj�)

@2 U(xi; x)

@x2i
dx+Qe(n; q)

Z 1

�1
fe(xj�)

@2 U(xi; x)

@x2i
dx > 0;

because @2 U(xi;x)

@x2i
> 0.

(Relative maximum and unique minimum) Next, for xi = �1 we have

B0(�1) = Qne(n; q)
Z 1

�1
fne(xj�)

@ U(xi; x)

@xi
jxi=�1dx+Qe(n; q)

Z 1

�1
fe(xj�)

@ U(xi; x)

@xi
jxi=�1dx < 0

where the strict inequality holds for a �1-type because our assumptions on U imply that
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@ U(xi;x)
@xi

< 0 if xi < x. Similarly, for xi = 1 we have

B0(1) = Qne(n; q)

Z 1

�1
fne(xj�)

@ U(xi; x)

@xi
jxi=1dx+Qe(n; q)

Z 1

�1
fe(xj�)

@ U(xi; x)

@xi
jxi=1dx > 0

where the strict inequality holds for a 1-type because our assumptions on U imply that

@ U(xi;x)
@xi

> 0 if xi > x.

Thus, the net-bene�ts of entering are always U-shaped, for any strategy used by the other

citizens. This means that for any symmetric (type-dependent) mixed entry strategy, �j(x),

played by all citizens j 6= i there is a unique interior minimum, which we will call at xmin� i.e.,

B is strictly decreasing for xi < xmin, has a derivative of 0 at xi = xmin, and is strictly increasing

for xi > xmin� and two relative maxima at xi = �1 and xi = 1.1

Proof of Proposition 1

Proof. We �rst rewrite citizen i�s best response entry strategy (7) in order to characterize the

di¤erent equilibrium cases depending on the entry cost. Thereafter, we use Envelope Theorem

and Intermediate Value Theorem to prove that a symmetric entry equilibrium always exists

and, �nally, show that it is unique.

Recall our assumptions n � 2, c > 0, and b � 0 and that the citizen types, xi 2 [�1; 1] � R,

are distributed according to any continuous cumulative probability function, F (x), strictly

increasing and twice di¤erentiable on [�1; 1] and with F (�1) = 0, F (1) = 1, and density f(x)

(A1-A3 in section "General Model" in the article).

First, use expressions (4) and (6) to rewrite the best response entry condition (7):

(1� p)n�1
�
n�1
n

� "
b+

R �xr
�xl
f(x) U(xi; x)dx

1� p

#
+

nX
m=2

�
n� 1
m� 1

�
pm�1 (1� p)n�m 1

m

�
"
b+

R �xl
�1 f(x) U(xi; x)dx+

R 1
�xr
f(x) U(xi; x)dx

p

#
� c: (16)

1The cutpoint best response property is even more general, and applies even if other citizens are not all
using the same strategy. However, here we are only interested in symmetric equilibria.
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For this and subsequent proofs it is helpful to separate the "integral"- and "probability"-terms

in condition (16). This yields the following modi�ed best response condition:2

LHS(70) = Pne(n; p)

Z �xr

�xl

f(x) U(xi; x)dx (17)

+Pe(n; p)

�Z �xl

�1
f(x) U(xi; x)dx+

Z 1

�xr

f(x) U(xi; x)dx

�
+ Pb(n; p)b � c:

The subscript �ne�in the Pne-term refers to the situation where none of the other citizens enters,

and

Pne(n; p) �
(n� 1)(1� p)n�2

n
> 0 for p 2 [0; 1). (18)

And, the subscript �e�in the Pe-term refers to the situation where at least one other citizen

enters, and

Pe(n; p) � 1

p

"
nX

m=2

�
n� 1
m� 1

�
pm�1 (1� p)n�m 1

m
+ (1� p)n�1 � (1� p)n�1

#

=
1

p

"
nX

m=1

�
n� 1
m� 1

�
pm�1 (1� p)n�m 1

m
� (1� p)n�1

#

=
1

p

"
1

np

nX
m=1

�
n

m

�
pm (1� p)n�m � (1� p)n�1

#

=
1

np2

"
nX

m=0

�
n

m

�
pm (1� p)n�m � (1� p)n

#
� (1� p)

n�1

p

=
1� (1� p)n

np2
� (1� p)

n�1

p
> 0 for p 2 (0; 1]. (19)

Finally, the subscript �b� in the Pb-term refers to the bene�ts from holding o¢ ce and, using

2In section "Extensions" in the article, we compare our stochastic default policy, d, with a �xed default
policy d 2 [�1; 1]. In this case, the best response entry condition (14) can be rewritten as:

(1� p)n�1(n�1n )U(xi; d) + Pe(n; p)

�Z �xl

�1
f(x)U(xi; x)dx +

Z 1

�xr

f(x)U(xi; x)dx

�
+ Pb(n; p)b � c:

The �rst term on the left-hand side is U-shaped in xi with a minimum at d, the second term is U-shaped in xi
(cf. the proof of Lemma 1), and the third term is constant in xi. Thus, the left-hand side is overall U-shaped
with a unique minimum value at xmin(�xl; �xr; d). In other words, while d a¤ects xmin, it does not change the
U-shape in xi of the left-hand side of the best response entry condition.
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similar rearrangements as for expression (19),

Pb(n; p) �
1� (1� p)n

np
� (1� p)

n�1

n
> 0 for p 2 [0; 1]. (20)

We continue by using condition (17) to specify the two best response conditions for citizen

types xi = �xl and xi = �xr. To avoid abundant equilibrium characterization, we introduce the

notation � 2 fl; rg and the indicator functions

F�(x) =

8><>: F (x) if � = r

F (�x) if � = l
and f�(x) =

8><>: f(x) if � = r

f(�x) if � = l
;

for x 2 [�1; 1] � R. Thus, we consider the mirror images F (�x) and f(�x) of F (x) and

f(x), respectively, with F�=r(�1) = F (�1) = 0 and F�=r(1) = F (1) = 1, and with F�=l(�1) =

F (1) = 1 and F�=l(1) = F (�1) = 0.

Using this, we can modify the best response entry condition (17) as follows: if all other

citizens j 6= i are using a cutpoint strategy �ej as de�ned in expression (2) (see Lemma 1), the

best response entry strategy of a citizen type xi = �x�, for � = l; r and � 6= ��, is to enter if and

only if:

Pne(n; p)

Z �x�

�x��

f�(x)U(�x�; x)dx (21)

+Pe(n; p)

�Z �x��

�1
f�(x)U(�x�; x)dx+

Z 1

�x�

f�(x)U(�x�; x)dx

�
+ Pb(n; p)b � c;

where p = p�� + p�, p�� = F�(�x��), and p� = 1� F�(�x�).

(Necessary and su¢ cient conditions) We can use this best response entry strategy to char-

acterize two necessary and su¢ cient conditions for a cutpoint equilibrium, (�x���; �x
�
�), to exist,

which must hold simultaneously for types �x�� and �x�. First, note the important relationship

between LHS(17), LHS(21), and Lemma 1. When the "c-line" on RHS(17) intersects the net-

bene�ts curve on LHS(17) at xi = �xl and xi = �xr, it must hold that xmin 2 [�xl; �xr]. Because the
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net-bene�ts curve is U-shaped in xi, this means that the cutpoint strategy �e (see expression (2))

ful�lls a necessary condition for the existence of a cutpoint equilibrium. Then, using the two

best response strategies (21) for � = l; r, the following equilibrium characterizations do indeed

constitute necessary and su¢ cient conditions for an entry equilibrium in cutpoint strategies to

exist.

There are four di¤erent equilibrium cases:

Case (i): If c � c � 1
n

h
b+

R 1
�1 f(x)U(�x

�
min; x)dx

i
, then �e�i = 1,8i ("everybody enters"), where

�x�l = �x
�
r = �x

�
min 2 (�1; 1) is determined by

R �x�min
�1 f(x)@U(xi;x)

@xi
jxi=�x�mindx=

R 1
�x�min

f(x)@U(xi;x)
@xi

jxi=�x�mindx.

This case is derived as follows: if LHS(17) is greater than or equal to c for all values of xi; �xl;

and �xr, then the unique equilibrium is for all n citizens to enter. This corresponds to an equi-

librium cutpoint xmin = �xmin = �xl = �xr.3 Thus, for this to hold, in LHS(21) we simply set

xmin = �xmin = �x� = �x�� and only consider the case m = n in the P -terms. Then, as stated

above, the inequality condition (21) reduces to:

1

n

�
b+

Z 1

�1
f�(x)U(�xmin; x)dx

�
� c � c for � = l; r; (22)

because p = F�(�xmin)+1�F�(�xmin) = 1, and therefore, Pe [n; p(�xmin) = 1] = 1
n
and Pb [n; p(�xmin) = 1] =

1
n
(see expressions (19) and (20)). Thus, there is universal entry if and only if c � c.4 Finally,

knowing xmin = �xmin = �xl = �xr, we can determine �xmin by using the �rst derivative of the

left-hand side of LHS(17) with respect to xi, setting this equal to zero, and replacing �xl; �xr;

and xi with �xmin. This gives:

@LHS(70)
���xi=�xmin=�xl=�xr
@xi

=

Pe(n; p = 1)

�Z �xmin

�1
f�(x)

@U(xi; x)

@xi
jxi=�xmindx�

Z 1

�xmin

f�(x)
@U(xi; x)

@xi
jxi=�xmindx

�
= 0

3The speci�cation of cutpoints is arbitrary when there is universal entry. Any bx such that �xl = �xr = bx
implies universal entry.

4Note that condition (22) implies that if c = 0, there is always universal entry because the left-hand side is
greater than or equal to zero for any feasible combination of n and b.
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,
Z �xmin

�1
f�(x)

@U(xi; x)

@xi
jxi=�xmindx =

Z 1

�xmin

f�(x)
@U(xi; x)

@xi
jxi=�xmindx; (23)

which implicitly determines �xmin, as stated above.

Case (ii): If c � c � max [cl; cr], where cl � n�1
n

h
b+

R 1
�1 f(x)U(�1; x)dx

i
and cr � n�1

nh
b+

R 1
�1 f(x)U(1; x)dx

i
, then �x�l = �1; �x�r = 1, and �e�i = 0;8i ("nobody enters").

This case is derived as follows: if LHS(17) is smaller than or equal to c for all values of xi; �xl;

and �xr, then the unique equilibrium is for no citizen to enter. This corresponds to an equilibrium

pair of cutpoints (�xl = �1; �xr = 1). Thus, for this to hold, we reverse the inequality sign of

condition (21), simply set �x�� = �1 and �x� = 1 in LHS(21), and only consider the case m = 0

in the P -terms. Then, as stated above, condition (21) reduces to

c� �
n� 1
n

�
b+

Z 1

�1
f�(x)U(1; x)dx

�
� c for � = l; r; (24)

because p = p�� + p� = F�(�x�� = �1)+ 1�F�(�x� = 1) = 0, and therefore, Pne (n; p = 0) = n�1
n

and Pb (n; p = 0) = n�1
n
(see expressions (18) and (20)). Thus, there is zero entry if and only if

c � c � max [cl; cr] (note that the probability of any citizen having type xi = �1 or xi = 1 is

equal to zero).

Case (iii): If ec � min [ecl;ecr] � c < c, where ec�� � c(�x�� = �1; �x� = x�) and x� = �x��(�x
�
�� =

�1) 2 (�xmin; 1) for � = l; r, then there is a unique cutpoint equilibrium where only some more

extreme citizen types in one direction are expected to enter. Speci�cally, if ec = ec�� then citizen
types xi � x� enter, that is, [�x��� = �1; �x�� 2 [x�; 1)], and all other types (xi < x�) do not enter.

This unique equilibrium is characterized by the two best response conditions

Pne(n; p�)

Z �x��

�1
f�(x)U(�x

�
� ; x)dx

+ Pe(n; p�)

Z 1

�x��

f�(x)U(�x
�
� ; x)dx+ Pb(n; p�)b = c (25)
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and

Pne(n; p�)

Z �x��

�1
f�(x)U(�1; x)dx

+ Pe(n; p�)

Z 1

�x��

f�(x)U(�1; x)dx+ Pb(n; p�)b � c; (26)

where ec = ec�� and p� = 1 � F�(�x��). Note that the probability of any citizen type �1 or x�

occurring is equal to zero. Moreover, x� = �x��(�x
�
�� = �1) is implicitly determined by

Pne(n; p�)

�Z x�

�1
f�(x)U(x�; x)dx�

Z x�

�1
f�(x)U(�1; x)dx

�
(27)

+ Pe(n; p�)

�Z x�

�1
f�(x)U(x�; x)dx�

Z 1

x�

f�(x)U(�1; x)dx
�
= 0;

and ec�� is determined by replacing �x�� with x� on the left-hand side of condition (25).
This case is derived as follows: if LHS(17) is greater than or equal to c for all values xi � x�

and smaller than c for all values of xi < x�, then the unique equilibrium is for all citizen types

equal to or larger than x� to enter, and for all other types not to enter. This corresponds

to a cutpoint equilibrium [�x�� = �1; �x� 2 [x�; 1)]. Thus, for this to hold, for a type �x� we

state condition (21) as equality and simply set �x��� = �1 in LHS(21) j�x� , where the subscript

denotes the citizen type whose strategy we investigate (see condition (25)), and for a type

�x�� we reverse the inequality sign and set �x��� = �1 in LHS(21)
��
�x�� (see condition (26)). In

condition (27), we determine the boundary case x� = �x�(�x�� = �1)� where a type �x�� = �1 is

just indi¤erent between entering and not entering as a candidate (note that the probability of

this type occurring is equal to zero)� by setting the left-hand sides of conditions (25) and (26)

equal and making simple rearrangements. Importantly, below we use Envelope Theorem to

show that a citizen type x�� = �1 always prefers not to enter if c > ec. Therefore, for ec � c < c
we only need condition (25) to compute the interior cutpoint policy �x�(�x�� = �1).

Case (iv): If c < c < ec, then there is a unique equilibrium pair of interior cutpoints, (�x�l ; �x
�
r),

where some more extreme citizen types in both directions are expected to enter. Speci�cally,
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for � = l; r, if ec = ec�� then [�x��� 2 (�1; �x�min); �x�� 2 (�x�min; x�)] and if ec = ec�� = ec� then
[�x��� 2 (�1; �x�min); �x�� 2 (�x�min; 1)], and in all these cases some citizen types in both directions

who are more extreme than or equal to �x��� or �x
�
� are expected to enter. This unique interior

equilibrium is characterized by the equality condition

Pne(n; p)

Z �x��

�x���

f�(x)U(�x
�
� ; x)dx (28)

+ Pe(n; p)

"Z �x���

�1
f�(x)U(�x

�
� ; x)dx+

Z 1

�x��

f�(x)U(�x
�
� ; x)dx

#
+ Pb(n; p)b = c;

which must hold simultaneously for � = l; r, where p = F�(�x���) + 1� F�(�x��).

This case is derived as follows: if LHS(17) is greater than or equal to c for all values of xi � �x���

and xi � �x�� and smaller than c for all values of xi 2 (�x���; �x��), then the unique equilibrium is for

all citizen types who are more extreme than or equal to �x��� and �x
�
� to enter, and for all other

more moderate types not to enter. This corresponds to a cutpoint equilibrium [�x�� 2 (�1; �xmin);

�x� 2 (�xmin; x�)] for ec = ec��. Thus, for this to hold, we simply have to state (21) as equality
for both � = l; r (see condition (28)) and simultaneously compute the values of the interior

cutpoints �x� and �x��.

(Existence) Next, we prove that a cutpoint equilibrium, (�x���; �x
�
�), always exist and is always

unique for any cumulative probability distribution of ideal points, F (x), satisfying A1-A3 (see

section "General Model" in the article). We proceed in the following steps. Here, we use

Envelope Theorem and Intermediate Value Theorem to show existence. Thereafter, we prove

uniqueness using our result that for any given entry probability, p, there is a unique cutpoint

equilibrium.

We begin by using Envelope Theorem. Recall that LHS(17) is a continuous function of

xi; �x��; and �x�. Now consider the following value function:

�[�x��; �x� jf�(x); n; c; b ] =
1Z

�1

f�(x)
�
c� LHS(17)[x; �x��; �x� jf�(x); n; c; b ]

�
dx
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and the maximization problem

��[�x���; �x
�
� jf�(x); n; c; b ] � max

�x�� ;�x�
�[�x��; �x� jf�(x); n; c; b ].

However, if both cutpoints are interior (the case with one interior cutpoint will be discussed

below), we know from equilibrium condition (28) that a solution to this problem� i.e., a cutpoint

equilibrium, (�x���; �x
�
�)� is implicitly determined by

LHS(17)[�x���; �x
�
� jf�(x); n; c; b ]

���xi=�x��� = LHS(17)[�x���; �x�� jf�(x); n; c; b ] ��xi=�x�� = c
which, using Lemma 1, gives:

��[�x���; �x
�
� jf�(x); n; c; b ] =

�x��Z
�x���

f�(x)
�
c� LHS(17)[x; �x���; �x�� jf�(x); n; c; b ]

�
dx. (29)

Here, we are interested in the e¤ects of a marginal change in the entry costs, c, on ��[:], and on

the equilibrium cutpoints in particular. Since the two cutpoints are mutually dependent, let us

write the pair as [�x���(�x
�
� ; c); �x

�
�(�x

�
��; c)]. Then, by the chain rule we have

d��[�x���(�x
�
� ; c); �x

�
�(�x

�
��; c); c jf�(x); n; b ]
dc

=
@��[:]

@c

+
@��[:]

@�x��(�x�; c)

�
d�x��(�x�; c)

dc
+
@�x��(�x�; c)

@�x�(�x��; c)

d�x�(�x��; c)

dc

�
+

@��[:]

@�x�(�x��; c)

�
d�x�(�x��; c)

dc
+
@�x�(�x��; c)

@�x��(�x�; c)

d�x��(�x�; c)

dc

�
;

which, using the �rst-order equilibrium condition @��[:]
@�x��(�x� ;c)

= @��[:]
@�x�(�x�� ;c)

= 0, yields

d��[�x���(�x
�
� ; c); �x

�
�(�x

�
��; c); c jf�(x); n; b ]
dc

=
@��[:]

@c
=

�x��Z
�x���

f�(x)dx > 0 for p 2 [0; 1): (30)

Therefore, a marginal change in c a¤ects ��[:] only directly, but not indirectly through changes

in �x��(�x�; c) and �x�(�x��; c) (in other words, the e¤ects on LHS(17)[:] in v�[:] are negligible and
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marginal changes in the cutpoints are independent from each other).

This is an important result, and it also informs us about how �x�� and �x� change when c

changes marginally. Expression (30) shows that an increase in ��[:] through a marginal increase

from c to c0 is entirely due to the higher entry costs of each potential citizen type x 2 [�x���; �x�� ].

Among these citizens, for c only types �x���(c) and �x
�
�(c) enter and all other, moderate types

x 2 (�x���(c); �x��(c)) abstain. By contrast, for c0 the entry costs exceed the net-bene�ts also for

types �x���(c) and �x
�
�(c), who now abstain too. Therefore, if both equilibrium cutpoints �x���

and �x�� are interior (see Proposition 1 (iv)), marginally increasing c to c
0 yields more extreme

equilibrium cutpoints, or �x0��� < �x��� and �x
�
� < �x0�� . As a consequence, the entry probability

decreases in both directions (i.e., p�� > p0�� and p� > p0�) and hence decreases overall (i.e.,

p > p0). If only one equilibrium cutpoint is interior, �x��, and the other is at the boundary,

�x��� = �1 (see Proposition 1 (iii)), it is readily veri�ed that the value function (29) and its

derivative (30) can be used by simply setting �x��� = �1. Then, marginally increasing c to c0

yields the interior cutpoint to become more extreme, or �x�� < �x
0�
� , while the boundary cutpoint

remains unchanged, or �x��� = �x
0�
�� = �1. As a consequence, the entry probability only decreases

in the direction of the interior cutpoint (i.e., p� > p0� and p�� = p
0
�� = 0) and hence decreases

overall (i.e., p > p0).

Moreover, importantly, for interior equilibrium cutpoints the net-bene�ts of citizen types

with exactly these cutpoints are larger for c0 than for c, respectively. This is because from

expression (30) we know that, on the margin, for c0 the new equilibrium cutpoints are sim-

ply reached by moving upwards along the U-shaped net-bene�t curve for c, that is, along

LHS(17)[xi; �x
�
��; �x

�
� jn; c; b ]. Finally, note that our results also establish that in any equilibrium

it must hold that �x�l 2 [�1; �x�min] and �x�r 2 [�x�min; 1], because cutpoints never get more moderate

if c increases. In summary, continuously increasing c creates one or more continuous equilibrium

paths [�x���(�x
�
� ; c); �x

�
�(�x

�
��; c)] with the following properties: (i) the interior cutpoints get more

extreme (at the boundary, �x��� = �1 remains), (ii) p��; p�; and p decrease; and (iii) LHS(21)

increases. The endpoints of any path are at c (p = 1, where �x��� = �x
�
� = �xmin) and at c (p = 0,
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where �x��� = �1 and �x�� = 1). Using expressions (22) and (24) we have:

c < c) 1

n

�
b+

Z 1

�1
f�(x)U(�xmin; x)dx

�
<

n� 1
n

�
b+max

�Z 1

�1
f�(x)U(�1; x)dx;

Z 1

�1
f�(x)U(1; x)dx

��
;

where the strict inequality holds because 1
n
< n�1

n
for n > 25 and

R 1
�1 f�(x)U(�xmin; x)dx <

max
hR 1
�1 f�(x)U(�1; x)dx;

R 1
�1 f�(x)U(1; x)dx

i
. Therefore, by the Intermediate Value Theorem,

at least one equilibrium path [�x���(�x
�
� ; c); �x

�
�(�x

�
��; c)] must exist. Finally, for c � c and c �

c, existence (and uniqueness) is readily veri�ed for universal entry and universal abstention,

respectively. This completes our proof of existence.

(Uniqueness) Next, we prove uniqueness of (�x���; �x
�
�) when there is at least one interior

cutpoint. To do so, we show that for any given entry probability p 2 [0; 1] at most one pair of

cutpoints can simultaneously ful�ll the best response condition (28) for � = l; r (see Proposition

1 (iv)), or conditions (25) and (26) (see Proposition 1 (iii)). The main idea of the proof is

that any continuous equilibrium path must use all p 2 [0; 1], and thus, if there is only one

cutpoint equilibrium for p, this would mean there is a unique equilibrium path. Note that

keeping p constant means that the three P (n; p)-terms in these conditions are not a¤ected

when �x�� and �x� change (see expressions (18) to (20)). It also means that it can neither be a

unilateral change in one cutpoint only, nor a simultaneous change in both cutpoints in opposite

directions (i.e., jointly more extreme or jointly less extreme). Note that for a �xed p this also

holds for equilibria with only one interior cutpoint. Thus, by keeping p constant, we need to

analyze changes in �x�� and �x� in the same direction. Without loss of generality, we focus on

increases from �x to �x0, that is, �x�� < �x0�� � �xmin and �xmin � �x� < �x0�, under the constraint

that p(�x��; �x�) = p(�x0��; �x
0
�). We account for these increases by modifying the partition of the

5For n = 2, there are special cases where c = c (e.g., for the utility function �
�� 1
2 (xi � 
)

��� used in subsection
"Example: Expected Net-Bene�ts, Entry Costs, and Unique Path of Entry Equilibria" in the article, when � = 1
and citizen ideal points are uniformly distributed), in which case only two possible equilibria exist: either both
citizens enter or both abstain.
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integrals in LHS (21). Then, before the change is implemented, for a �x�-type this gives:

LHS (21)
��
(�x�� ;�x�);�x�

= Pe(n; p)

Z �x��

�1
f�(x)U(�x�; x)dx (31)

+Pne(n; p)

Z �x0��

�x��

f�(x)U(�x�; x)dx+ Pne(n; p)

Z �x�

�x0��

f�(x)U(�x�; x)dx

+Pe(n; p)

Z �x0�

�x�

f�(x)U(�x�; x)dx+ Pe(n; p)

Z 1

�x0�

f�(x)U(�x�; x)dx + Pb(n; p)b:

Next, we rewrite this expression for a �x0�-type, after increasing both cutpoints. Compared to

expression (31), note that besides replacing �x� with �x0� in the utility function, U(:), also the

P -terms of the second and fourth terms are a¤ected. This gives:

LHS (21)
���(�x0�� ;�x0�);�x0�

= Pe(n; p)

Z �x��

�1
f�(x)U(�x

0
�; x)dx (32)

+Pne(n; p)

Z �x0��

�x��

f�(x)U(�x
0
�; x)dx+ Pne(n; p)

Z �x�

�x0��

f�(x)U(�x
0
�; x)dx

+Pe(n; p)

Z �x0�

�x�

f�(x)U(�x
0
�; x)dx+ Pe(n; p)

Z 1

�x0�

f�(x)U(�x
0
�; x)dx + Pb(n; p)b

+ [Pe(n; p)� Pne(n; p)]
Z �x0��

�x��

f�(x)U(�x
0
�; x)dx

� [Pe(n; p)� Pne(n; p)]
Z �x0�

�x�

f�(x)U(�x
0
�; x)dx;

where the last two terms are used to make the �rst six terms comparable to the six terms

in expression (31). Importantly, these six terms are strictly larger in expression (32) than in

(31). This follows from Lemma 1 by setting xi = �x� and xi = �x0�, respectively, and using

xmin(�x��; �x�) � �x� < �x0� (because �x0� moves on the same net-bene�ts curve as �x�).6

6To see this, we simplify expression (31) and the �rst six terms of expression (32), the latter of which are

equivalent to LHS (21)
���(�x��;�x�);�x0� . This gives:

12



Next, we examine the last two terms of expression (32). If it holds that

[Pe(n; p)� Pne(n; p)]
Z �x0��

�x��

f�(x)U(�x
0
�; x)dx

� [Pe(n; p)� Pne(n; p)]
Z �x0�

�x�

f�(x)U(�x
0
�; x)dx

,
Z �x0��

�x��

f�(x)U(�x
0
�; x)dx �

Z �x0�

�x�

f�(x)U(�x
0
�; x)dx; (33)

where Pe(n; p) � Pne(n; p) for p 2 (0; 1],7 then we have shown that LHS(21) always strictly

increases for a given p if both cutpoints increase. Note that for p = 0, the only feasible pair is

(�x�� = �1; �x� = 1). To see that condition (33) indeed holds, it is su¢ cient to show that the

minimal gain on the left-hand side,
R �x0�
�x�
f�(x)dxU(�x

0
�; �x

0
��) (using

R �x0��
�x��

f�(x)dx =
R �x0�
�x�
f�(x)dx;

since p is held constant), is equal to or larger than the maximal loss on the right-hand side,R �x0�
�x�
f�(x)dxU(�x

0
�; �x�). That is, we set the most extreme values constant and multiply them by

the equal probabilities. This gives:

Z �x0�

�x�

f�(x)dxU(�x
0
�; �x

0
��) �

Z �x0�

�x�

f�(x)dxU(�x
0
�; �x�) (34)

, U(�x0�; �x
0
��) � U(�x0�; �x�);

LHS (21)
��
(�x��;�x�);�x� = Pe(n; p)

R �x��
�1 f�(x)U(�x�; x)dx+ Pne(n; p)

R �x�
�x��

f�(x)U(�x�; x)dx

+Pe(n; p)

Z 1

�x�

f�(x)U(�x�; x)dx+ Pb(n; p)b

< LHS (21)
���(�x��;�x�);�x0� = Pe(n; p) R �x���1 f�(x)U(�x

0
�; x)dx+ Pne(n; p)

R �x�
�x��

f�(x)U(�x
0
�; x)dx

+Pe(n; p)

Z 1

�x�

f�(x)U(�x
0
�; x)dx+ Pb(n; p)b:

for �x� < �x0� (see Lemma 1).
7Using expressions (18) and (19), this is derived as follows: Pe(n; p) � Pne(n; p) for p 2 (0; 1]

, p
nX
k=1

(1� p)k�1 � np(1� p)n�1 + (n� 1) p2(1� p)n�2 ,
nX
k=1

1

(1� p)n�k�1 � n� p

, 1

(1� p)n�2 +
1

(1� p)n�3 + :::+ 1 + (1� p) � n� p; since
1

(1� p)n�k�1 � 1 for k = 1; :::; n� 1

if p 2 (0; 1) and 1
(1�p)n�k�1 = 1� p if k = n. Note that Pe(n; p) = Pne(n; p) if n = 2:
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which always holds because �x0�� � �xmin � �x� < �x0�. Note that the same things hold when

there is one boundary cutpoint, �x0�� = �1 (this is readily veri�ed by replacing �x0�� with �1

in expressions (32) to (34)). Therefore, increasing �x�� and �x� while keeping p constant yields

LHS (21)
��
(�x�� ;�x�);�x� < LHS (21)

���(�x0�� ;�x0�);�x0� , and also LHS (21) ��(�x�� ;�x�);�x�� > LHS (21) ���(�x0�� ;�x0�);�x0��
(to understand the latter inequality, consider the reverse decreases from �x0�� to �x�� and �x

0
� to �x�,

which is analyzed analogous to the increases above). However, in equilibrium it must hold for

(�x��; �x�) that LHS (21)
��
(�x�� ;�x�);�x�� = LHS (21)

��
(�x�� ;�x�);�x� , and thus, given the two inequalities

it cannot hold simultaneously for (�x0��; �x
0
�) that LHS (21)

���(�x0�� ;�x0�);�x0�� = LHS (21) ���(�x0�� ;�x0�);�x0� .
Thus, for any given entry probability p 2 [0; 1], there is a unique cutpoint equilibrium. Given

the properties of the equilibrium path derived above, this also means that there is a unique

cutpoint equilibrium for any given c > 0, which completes our proof Proposition 1.

Proof of Proposition 2

Proof. We begin by analyzing the comparative statics e¤ects of changes in the costs of entry,

c, and the bene�ts from holding o¢ ce, b on the equilibrium cutpoints, (�x�l ; �x
�
r), that use at least

one interior cutpoint. Thereafter, we derive the cutpoints for very large n, that is, lim n!1�x
�
l (n)

and lim n!1�x
�
r(n).

The proof uses the best response entry strategy (21). First, note that the three P (n; p)-

terms (see expressions (18) to (20)) in this condition are not directly a¤ected by a change in c

or b, and the three integral terms are not directly a¤ected by a change c; b; or n. Importantly,

if �x�� and �x� are interior, we know from the proof of Proposition 1 that there is a unique

equilibrium path where LHS(21)
��
�x�� = LHS(21) j�x� = c and both cutpoints simultaneously

get more extreme if c increases. Moreover, if �x�� = �1 and �x� is interior, there is a unique

equilibrium path where LHS(21)
��
�x��=�1 � LHS(21) j�x� = c and �x�� = �1 remains and �x�

gets more extreme if c increases. These results can be used to derive the following comparative

statics e¤ects:

(Costs of entry) LHS(21) is constant in c while RHS(21) is strictly increasing in c for

14



� = l; r. Because on the unique equilibrium path LHS(21) is strictly increasing if both interior

cutpoints �x�� and �x� get more extreme (if �x�� = �1 remains and the interior cutpoint �x�

increases), this implies that on this path �x�� strictly decreases (remains) and �x� strictly increases

if c increases. This implies less entry, in the sense of stochastic dominance, and therefore the

expected number of candidates decreases. It also implies that candidates and policy outcomes

are more extreme, on average.

(Bene�ts from holding o¢ ce) LHS(21) is strictly increasing in b (since Pb(n; p) > 0) while

RHS(21) is constant in b for � = l; r. Because on the unique equilibrium path LHS(21) is

strictly decreasing if both interior cutpoints �x�� and �x� get more moderate (if �x��(�x� � x�) =

�1 remains or increases and the interior cutpoint �x� decreases), this implies that on this path

�x�� strictly increases (remains or strictly increases) and �x� strictly decreases if b increases. This

implies more entry, in the sense of stochastic dominance, and therefore the expected number

of entrants increases. It also implies that candidates and policy outcomes are less extreme, on

average.

(Community size) Here we show that limn!1 �x�l (�x
�
r; n) = �1. The proof that limn!1

�x�r(�x
�
l ; n) = 1 is identical. Because we are looking at in�nite sequences on a compact set, there

must exist at least one convergent subsequence so we only need to show lim infn!1 �x�l (�x
�
r; n) =

�1. Suppose to the contrary that lim infn!1 �x�l (�x�r; n) > �1. Then there exists an � and a

subsequence fnkg ! 1 and an integer k such that for k > k the probability a randomly

selected citizen enters equals pk > �. This implies that the equilibrium probability of winning

along this subsequence goes to zero. But this in turn implies that nobody will enter, which

implies �x�l (�x
�
r; nk) = �1, a contradiction.

Proof of Proposition 3

Proof. To show (i), we already showed in Proposition 1 that no entry is an equilibrium in the

�nite n case if and only if c � n�1
n
max[b+vl; b+vr]. The result follows immediately. Therefore,

in both cases (ii) and (iii) we must have � > 0. The best response condition (21) for � = l; r
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is:

Pne(n; p)

Z �x�

�x��

f�(x)U(�x�; x)dx

+ Pe(n; p)

�Z �x��

�1
f�(x)U(�x�; x)dx+

Z 1

�x�

f�(x)U(�x�; x)dx

�
+ Pb(n; p)b � c.

For n ! 1, and using limn!1 �x
�
��(n) = �1 and limn!1 �x

�
�(n) = 1 (see Proposition 2) and

limn!1 c = c, the best response condition for a citizen type �x� can be reduced to:

lim
n�!1

�
Pne(n; p)

Z 1

�1
f�(x)U(1; x)dx+ Pe(n; p)p��(n)U(1;�1) + Pb(n; p)b

�
� c; (35)

since U(1;�1) = limn!1

R �x���(n)
�1 f�(x)U(1;x)dxR �x���(n)

�1 f�(x)dx
and U(1; 1) = limn!1

R 1
�x�
�
(n) f�(x)U(1;x)dxR 1
�x�
�
(n) f�(x)dx

= 0.

Moreover, using expressions (18) and (20) gives:

lim
n�!1

Pne(n; p) = lim
n�!1

(n� 1)(1� p)n�2
n

= lim
n�!1

(1� p)n�2;

lim
n�!1

Pe(n; p)p��(n) = lim
n�!1

p��
p

�
1� (1� p)n

np
� (1� p)n�1

�
;

and

lim
n�!1

Pb(n; p) = lim
n�!1

�
1� (1� p)n

np
� (1� p)

n�1

n

�
:

For large N , since p is close to 0;8 we can approximate the binomial distribution by the Poisson

distribution using
�
N
k

�
pk(1 � p)N�k � (Np)k

k!
e�np. Moreover, let us denote � � limn!1E(m)

= limn!1 np and � � � limn!1E(m�) = limn!1 np�, where p = p�� + p�, m = m�� +m�, and

� = ��� + � � for � = l; r and � 6= ��. Then, setting k = 0 and N = n � 2 in the Poisson

approximation yields:

(1� p)n�2 � [(n� 2)p]0

0!
e�(n�2)p = e�(n�2)p � e�� ,

8Note that p must converge to zero, and np must be bounded. If not, then the expected number of entrants
would be in�nite, and therefore nobody will enter because the probability of winning is zero and c > 0.
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where e�(n�2)p� � e�np� and e�(n�2)p � e�np. Similarly, setting k = 0 and N = n (N = n� 1)

in the Poisson approximation yields:

p��
p

�
1� (1� p)n

np
� (1� p)n�1

�
� ���

�

"
1� (np)0

0!
e�np

�
� [(n� 1)p]

0

0!
e�(n�1)p

#
� ���

�

�
1� e��
�

� e��
�

and
1� (1� p)n

np
� (1� p)

n�1

n
�
1� (np)0

0!
e�np

�
�

[(n�1)p]0
0!

e�(n�1)p

n
=
1� e��
�

;

where e�(n�1)p� � e�np� and e�(n�1)p � e�np and limn!1
e�(n�1)p

n
= 0 since e�(n�1)p � 1 for

p 2 [0; 1]. Thus we can rewrite the best response condition (35) as

e��v� +
���
�

�
1� e��
�

� e��
�
U(1;�1) + 1� e

��

�
b � c: (36)

To prove case (ii), observe that � � > 0 for both � = l; r implies that (36) holds with equality

for both � = l; r. Rearranging terms yields

� � = ���� +
1

c

h
�e��v� +

���
�

�
1� (� + 1)e��

�
U(1;�1) + (1� e�� )b

i
; (37)

Thus equations (12) and (13) admit strictly positive solutions to � l and � r. To show the opposite

direction, suppose that equations (12) and (13) admit strictly positive solutions to � l and � r.

Then for large n there must be interior equilibrium cutpoints f�x�l (n); �x�r(n)g whose expected

entry rates from the left and right are arbitrarily close to � l and � r, respectively.

Case (iii) follows immediately from the �rst two cases. We can say a bit more about the

range of costs where case (iii) holds. Speci�cally, there will be entry only from the left if

c 2 [ecr; b + vl), with ecr being the entry cost at which equations (12) and (13) both hold with
equality and � r = 0: Similarly, there will be entry only from the right if c 2 [ecl; b+ vr), with ecl
being the entry cost at which equations (12) and (13) both hold with equality and � l = 0: For
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example,

ecr = e�� l(ecr)vr + �1� e�� l(ecr)
� l(ecr) � e�� l(ecr)

�
U(1;�1) + 1� e

�� l(ecr)
� l(ecr) b:

where � l(ecr) solves (12) at ecr, with � r = 0:
Moreover, if vl > vr we can only have the case of one-sided entry from the left, and if

vr > vl we can only have the case of one-sided entry from the right.

To see this, suppose that vl > vr (the case of vr > vl is proved similarly). From (i) we

know that if c = b + vl then � l = � r = � = 0. Moreover, equation (12), with �r
�
replaced by 0

(because there is no entry) is satis�ed with equality at cl � vl + b. To see this, note that when

� l = � r = � = 0 equation (12) can be written as:

cl = lim
��!0

�
�e��vl +

(1� e�� )
�

b

�
= vl + b (38)

by l�Hôpital�s rule. Hence at this cost, a citizen with �xl = �1 is indi¤erent between entering

and not entering. But since vl > vr; we have cl > vr + b so a citizen with �xr = 1 is strictly

better o¤ not entering. Since equations (12) and (13) vary continuously in c; � l; and � r it must

be the case that for all costs c < cl in a small enough neighborhood of cl the equilibrium will

have � l > 0 and � r = 0. It is straightforward to prove that ecr exists. It cannot be the case
that � r = 0 for all values of c because U(1;�1) > maxfvl; vrg, and if equations (12) and (13)

both hold with equality for some c such that � l > 0 and � r = 0, then equations (12) and (13)

both hold with equality with � l > 0 and � r > 0 for all c0 < c. To see that entry from only one

direction must be in the l-direction if and only if vl > vr, we only need to show that whenever

equations (12) and (13) both hold and � > 0 we must have � l � � r. This follows because a

necessary condition for equations (12) and (13) to both hold and � > 0 is:

�e��vl +
� r
�

�
1� (� + 1)e��

�
U(1;�1) = �e��vr +

� l
�

�
1� (� + 1)e��

�
U(1;�1);

which holds if and only if � l � � r. This completes the proof of Proposition 3 (iii) and hence

Proposition 3.
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Proof of Proposition 4

Proof. The proof uses the same logic as the proof of Proposition 1 for private information.

First, we derive citizen i�s best response entry strategy with directional information about each

entrant�s ideal points (which is revealed via nomination conventions of party L and party R),

and show that it is always a cutpoint strategy (cf. Lemma 1). Thereafter, we use Envelope

Theorem and Intermediate Value Theorem to prove that a symmetric entry equilibrium always

exists for any cumulative probability distribution of ideal points, F (x), satisfying A1-A3 (see

section "General Model" in the article). Finally, we argue why the equilibrium characterization

and comparative statics results with directional information are very similar to the case with

private information (cf. Propositions 2 and 3).

(Best response entry strategy) Consider citizen i. Suppose all citizens j 6= i are using an

entry strategy de�ned by two cutpoints:

�ej =

8><>: 0 if xj 2 (�xl; �xr)

1 if xj 2 [�1; �xl] [ [�xr; 1];
(39)

where (�xl; �xr) is some pair of ideal points with �1 � �xl � �xr � 1. Hence, j is a contender for

the nomination of party L (R) if xj 2 [�1; �xl] (xj 2 [�xr; 1]). We assume that voters can verify

an entrant�s political leaning, and hence, we rule out the possibility that she competes in the

nominating convention of the opposing party for strategic reasons. Moreover, let s� denote the

probability that a randomly selected citizen j 6= i enters to seek the nomination of party �, with

� = l; r, where s�� � Pr(xj � �x��) = F (�x��), s� � Pr(xj � �x�) = 1� F (�x�), and s � s�� + s�

for our F (x); x 2 [�1; 1] � R, and � 6= ��. Recall the voting cutpoint �x� � x��+x�
2

, with

x�� �
R �x��
�1 f�(x)xdx

s��
and x� �

R 1
�x�
f�(x)xdx

s�
. Then, party ���s and party ��s expected vote share is

given by ���(�x�) �
R �x�
�1 f�(x)dx and ��(�x�) � 1� ���(�x�) =

R 1
�x�
f�(x)dx, respectively.

To derive the equilibrium cutpoints,
�
(�x�l ; �x

�
r) ; �x

�
�

�
, we must compare citizen i�s expected

payo¤s as both an entrant and a non-entrant, given the equilibrium decisions in subsequent

19



stages (i.e., the Nomination, Voting, and Policy decision stages). Then,
�
(�x�l ; �x

�
r) ; �x

�
�

�
is a

symmetric equilibrium if and only if �ei (�x�l ; �x
�
r) is a best response for citizen i when �ej (�x

�
l ; �x

�
r)

is the entry strategy of all j 6= i.

The expected payo¤ of a type xi 2 [�x�; 1] for entering as a �-candidate, �ei = 1, when all

other citizens j 6= i use the entry strategy �ej, is:

E[�i j xi 2 [�x�; 1]; �ei = 1] = (1� s)n�1 b

+

nX
m�=2

�
n� 1
m� � 1

�
(s�)

m��1 (1� s)n�m�

�
b

m�

� m� � 1
m�

E [U(xi; 
) j 
 2 [�x�; 1]]
�

(40)

+

n�1X
m��=1

�
n� 1
m��

�
(s��)

m�� (1� s)n�m���1

264��b� (1� ��) E [U(xi; 
) j 
 2 [�1; �x��]]
375

+
n�1X
m�=2

n�m�X
m��=1

�
n� 1
m� � 1

��
n�m�

m��

�
(s�)

m��1 (s��)
m�� (1� s)n�m��m��

�
�
��
m�

b� (1� ��)E [U(xi; 
) j 
 2 [�1; �x��]]�
m� � 1
m�

��E [U(xi; 
) j 
 2 [�x�; 1]]
�
� c:

The �rst term gives the case where i receives b since she is the only entrant, which occurs with

probability (1� s)n�1. The second term gives the cases where, in addition to herself, there are

m��1 other contenders for the nomination of party �, but there is no party �� because nobody

enters in this direction (m�� = 0). This occurs with probability
�
n�1
m��1

�
(s�)

m��1 (1� s)n�m� ,

where the summation accounts for all possiblem��1 � 1, and the probability that i will be nom-

inated and hence lead the community is 1=m�. Then, her expected bene�ts from holding o¢ ce

are b=m� and her expected payo¤ loss in case a like-minded entrant will lead the community is

m��1
m�

E [U(xi; 
) j 
 2 [�x�; 1]] (see expression (42) below). The third term gives the cases where

i is the only contender for the nomination of party � (m� = 1), and there are m�� = 1; :::; n� 1

contenders in party ��, which occurs with probability
�
n�1
m��

�
(s��)

m�� (1� s)n�m���1. Then,

i will lead the community and gain b with probability ��, that is, she is the nominee with

probability 1 and her "party" will win with probability �� (see expression (43), below) and

her expected payo¤ loss is (1� ��) E [U(xi; 
) j 
 2 [�1; �x��]] (see expression (41), below). Fi-
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nally, the fourth term gives the cases with at least two contenders for nomination of party �

(m� � 1 � 1, including i) and at least one contender in party �� (m�� � 1), which occurs

with probability
�
n�1
m��1

��
n�m�

m��

�
(s�)

m��1 (s��)
m�� (1� s)n�m��m�� (the summations account for

all possible m� +m�� = 3; :::; n with m� � 2 and m�� � 1). Then, citizen i�s expected bene�t

from holding o¢ ce is ��
m�
� b and her expected payo¤ loss if she will not be the community

leader is (1� ��)E [U(xi; 
) j 
 2 [�1; �x��]] + m��1
m�

��E [U(xi; 
) j 
 2 [�x�; 1]] (i.e., some j 6= i

will lead the community with probability 1� ��
m�
). Speci�cally, the expected payo¤ loss if party

�� wins and implements a policy 
 2 [�1; �x��], which occurs with probability 1� ��, is:

E [U(xi; 
) j 
 2 [�1; �x��]] =
R �x��
�1 f�(x)U(xi; x)dx

s��
for �x�� 6= �1; (41)

and if another �-party contender will be the nominee and implements a policy 
 2 [�x�; 1], which

occurs with probability m��1
m�

��, the expected payo¤ loss is:

E [U(xi; 
) j 
 2 [�x�; 1]] =
R 1
�x�
f�(x)U(xi; x)dx

s�
for �x� 6= 1: (42)

Moreover, the probability that party � will win is given by

8>>>>>>>>>>>><>>>>>>>>>>>>:

0 if m� = 0 ^m�� � 1

��(��) �
Xn

n�=bn=2c+1

�
n

n�

�
(��)

n� (1� ��)n�n�

+

8><>:
1
2

�
n
n=2

�
(��)

n=2 (1� ��)n=2 for n even

0 for n odd

if m� � 1 ^m�� � 1

1 if m� � 1 ^m�� = 0

: (43)

The summation in the �rst term of ��(��) accounts for all possible victories of party �, that is

for n� =
�
n
2

�
+ 1; :::; n, where n� (n�� � n � n�) denotes the vote count of party � (��). The

probability of the n�-events are given by
�
n
n�

�
(��)

n� (1 � ��)n�n� (recall that the probability

that a randomly selected citizen votes for party � is ��). Moreover, the second term of ��(��)
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accounts for a tie, n�� = n�, which can only occur for n even and in which case a random

tie-breaking determines the winner with probability one half for each party.

Finally, i bears the entry costs, c, independent of how many other citizens enter as a left

or right candidate, which gives the �fth term in expression (40).

By contrast, the expected payo¤ of a type xi 2 [�x�; 1] for not entering as a �-candidate,

�ei = 0, is:

E[�i j xi 2 [�x�; 1]; �ei = 0] = (1� s)n�1
�
b

n
� n� 1

n
E[U(xi; d) j d 2 (�x��; �x�)]

�

�
nX

m�=2

�
n� 1
m� � 1

�
(s�)

m��1 (1� s)n�m� E [U(xi; 
) j 
 2 [�x�; 1]] (44)

�
n�1X

m��=1

�
n� 1
m��

�
(s��)

m�� (1� s)n�m���1 E [U(xi; 
) j 
 2 [�1; �x��]]

�
n�1X
m�=2

n�m�X
m��=1

�
n� 1
m� � 1

��
n�m�

m��

�
(s�)

m��1 (s��)
m�� (1� s)n�m��m��

�

264(1� ��)E [U(xi; 
) j 
 2 [�1; �x��]] + ��E [U(xi; 
) j 
 2 [�x�; 1]]
375 :

The �rst term corresponds to the event where, like herself, no other citizen enters, which occurs

with probability (1� s)n�1. In this case the stochastic default policy, d, takes e¤ect (i.e., one

citizen is randomly selected as the new community leader). Then, citizen i�s expected bene�ts

from holding o¢ ce is b=n (we assume that d does not invoke any entry costs in this event; see

footnote 8 in the article) and with probability (n � 1)=n she will not be selected which yields

her an expected payo¤ loss of:

E[U(xi; d) j d 2 (�x��; �x�)] =
R �x�
�x��
f�(x) U(xi; x)dx

1� s for �x�� 6= �x�. (45)

Observe that if �x�� = �x�, the default policy is irrelevant because all citizens enter. The other

three terms in expression (44) are very similar to those in expression (40), except that i does

not enter and thus cannot gain b.
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Finally, relating expressions (40) and (44) and rearranging yields the best response entry

strategy for a citizen with ideal point xi 2 [�x�; 1], if all other citizens are using cutpoint strategy

�ej, j 6= i, which is to enter as a �-candidate if and only if9

(1� s)n�1
�
n�1
n

�
[b+ E[ U(xi; d) j d 2 (�x��; �x�)]]

+

nX
m�=2

�
n� 1
m� � 1

�
(s�)

m��1 (1� s)n�m�
1

m�

264b+ E [U(xi; 
) j 
 2 [�x�; 1]]
375 (46)

+

n�1X
m��=1

�
n� 1
m��

�
(s��)

m�� (1� s)n�m���1 ��

264b+ E [U(xi; 
) j 
 2 [�1; �x��]]
375

+
n�1X
m�=2

n�m�X
m��=1

�
n� 1
m� � 1

��
n�m�

m��

�
(s�)

m��1 (s��)
m�� (1� s)n�m��m��

� ��
m�

264b+ E [U(xi; 
) j 
 2 [�x�; 1]]
375 � c;

where LHS(46) and RHS(46) give citizen i�s expected net-bene�ts and costs from running for

o¢ ce, respectively. Note that the expected payo¤ loss (1� ��) E [U(xi; 
) j 
 2 [�1; �x��]] does

no longer appear in the fourth term of condition (46), because the winning probability of party

�� is una¤ected by citizen i�s decision to enter when m� � 2 ^ m�� � 1.

(U-shaped net-bene�ts curve) Next, we show that a symmetric entry equilibrium of our

citizen candidate model with directional information is always in cutpoint strategies. Similar

to subsection "Cutpoint Strategies and Best Response Condition" in the article, we analyze

the best response of a citizen type xi 2 [�x�; 1] for any arbitrary symmetric entry strategy,

�(x) : [�1; 1] ! [0; 1], played by all j 6= i, where �(x) denotes the probability of entering for

a citizen with ideal point x. Then, the left-hand side of best response condition (46) can be

9Without loss of generality, we assume that indi¤erent citizen types choose to enter.
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written more generally as:

eQne(n; q)Z 1

�1
f�;ne(xj�) U(xi; x)dx+ eQe;��(n; q��; q�)Z �x�

�1
f�;e(xj�) U(xi; x)dx (47)

+ eQe;�(n; q��; q�)Z 1

�x�

f�;e(xj�) U(xi; x)dx+ eQb(n; q��; q�)b � c;

where, q�� �
R �x�
�1 �(x)f�(x)dx and q� �

R 1
�x�
�(x)f�(x)dx give the probabilities that a randomly

selected j 6= i enters as a ��-candidate and �-candidate, respectively, with q � q�� + q�, and

�x� is implicitly determined by
R �x�
�1 f�;e(xj�) U(�x�; x)dx =

R 1
�x�
f�;e(xj�) U(�x�; x)dx. The condi-

tional distribution of types in the no entry (�ne�) and some entry (�e�) events are f�;ne(xj�) =
[1��(x)]f�(x)

1�q and f�;e(xj�) = �(x)f�(x)
q

, assuming q 2 (0; 1) (see expressions (9) and (10) in

the article). Then, eQne(n; q) � (1� q)n�1
�
n�1
n

�
corresponds to the case where no j 6= i

enters; eQe;��(n; q��; q�) � Pn�1
m��=1

�
n�1
m��

�
(q��)

m�� (1� q)n�m���1 �� corresponds to the cases

where at least one j 6= i enters as a ��-candidate but no like-minded �-candidate of i en-

ters; eQe;�(n; q��; q�) � Pn
m�=2

�
n�1
m��1

�
(q�)

m��1 (1� q)n�m� 1
m�
+
Pn

m�=1

Pn�m�

m��=1

�
n�1
m��1

� �
n�m�

m��

�
(q�)

m��1 (q��)
m�� (1� q)n�m��m�� ��

m�
corresponds to the cases where at least one j 6= i enters as

a �-candidate but nobody enters in the ��-direction and hence there is no party �� (�rst term)

and to the cases with entry in both directions (second term); and eQb(n; q��; q�) � eQne(n; q) +eQe;��(n; q��; q�) + eQe;�(n; q��; q�).
It is straightforward to see that the result of Lemma 1 also applies to our model with

directional information: that is, for any symmetric entry strategy, �(x), played by all other

citizens, LHS (47) is a U-shaped function in xi. This is because all eQ-terms, b, f�;ne(xj�)
and f�;e(xj�) and thus �x� are �xed, so that the best response of a citizen type xi 2 [�x�; 1]

depends only on the utility loss function, U(xi; x), which we assume is convex (i.e., U-shaped,

or V-shaped in case of linear preferences). Therefore, LHS (47) is U-shaped in xi and, in

equilibrium, any symmetric entry strategy must be a cutpoint strategy also in our model with

directional information.

(Existence) Next, we prove that a symmetric entry equilibrium in a pair of cutpoints,
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(�x���; �x
�
�), and a voting cutpoint �x�(�xl; �xr) always exists for any cumulative probability distri-

bution of ideal points, F (x), satisfying A1-A3 (see section "General Model" in the article).

As in the proof of Proposition 1, we do so using Envelope Theorem and Intermediate Value

Theorem. Recall that LHS(46) is a continuous function of xi, the entry cutpoints (�x��; �x�),

and the voting cutpoint �x� 2 (�x��; �x�). Now consider the following value function:

#[�x��; �x�; �x� jf�(x); n; c; b ] =
1Z

�1

f�(x)
�
c� LHS(46)[x; �x��; �x�; �x� jf�(x); n; c; b ]

�
dx

and the maximization problem

#�[�x���; �x
�
� ; �x

�
� jf�(x); n; c; b ] � max

�x�� ;�x� ;�x�
#[�x��; �x�; �x� jf�(x); n; c; b ].

If both entry cutpoints are interior, then equilibrium condition (46) must hold as an equality

for both xi = �x�� and xi = �x� (cf. the proof of Proposition 1 (iv)) and a solution to this

problem� i.e., a cutpoint equilibrium, (�x���; �x
�
�)� is implicitly determined by

LHS(46)[�x���; �x
�
� ; �x

�
� jf�(x); n; c; b ]

���xi=�x��� = LHS(46)[�x���; �x�� ; �x�� jf�(x); n; c; b ] ��xi=�x�� = c
which, using our previous result that LHS (47) is U-shaped in xi, gives:

#�[�x���; �x
�
� ; �x

�
� jf�(x); n; c; b ] =

�x��Z
�x���

f�(x)
�
c� LHS(46)[x; �x���; �x�� ; �x�� jf�(x); n; c; b ]

�
dx (48)

(the case with one interior cutpoint will be explained below). We are interested in how a

marginal change in the entry costs, c, a¤ects #�[:] and, in particular,
�
�x���; �x

�
�

�
. Because of the

mutual dependence of the cutpoints, we can write the triple as
�
[�x���(�x

�
� ; �x

�
�; c); �x

�
�(�x

�
��; �x

�
�; c)];

�x��(�x
�
��; �x

�
�)
�
. Note that while �x��� and �x

�
� depend directly on c, �x� only depends indirectly on
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c via both entry cutpoints (i.e.,
d�x��(�x

�
�� ;�x�)

dc
= 0). Then, by the chain rule we have

d#�[�x���(�x
�
� ; �x

�
�; c); �x

�
�(�x

�
��; �x

�
�; c); �x

�
�(�x

�
��; �x

�
�) jf�(x); n; b ]

dc
=
@#�[:]

@c

+
@#�[:]

@�x��(�x�; �x�; c)

�
d�x��
dc

+
@�x��
@�x�

d�x�
dc

+
@�x��
@�x�

�
@�x�
@�x�

d�x�
dc

+
@�x�
@�x�

@�x�
@�x��

d�x��
dc

��
+

@#�[:]

@�x�(�x��; �x�; c)

�
d�x�
dc

+
@�x�
@�x��

d�x��
dc

+
@�x�
@�x�

�
@�x�
@�x��

d�x��
dc

+
@�x�
@�x��

@�x��
@�x�

d�x�
dc

��
+

@#�[:]

@�x�(�x��; �x�)

�
@�x�
@�x��

�
d�x��
dc

+
@�x��
@�x�

d�x�
dc

+
@�x��
@�x�

@�x�
@�x�

d�x�
dc

�
+
@�x�
@�x�

�
d�x�
dc

+
@�x�
@�x��

d�x��
dc

+
@�x�
@�x�

@�x�
@�x��

d�x��
dc

��
:

Next, using the �rst-order equilibrium condition @#�[:]
@�x��(�x� ;�x�;c)

= @#�[:]
@�x�(�x�� ;�x�;c)

= @#�[:]
@�x�(�x�� ;�x�)

= 0

yields

d#�[�x���(�x
�
� ; �x

�
�; c); �x

�
�(�x

�
��; �x

�
�; c); �x

�
�(�x

�
��; �x

�
�) jf�(x); n; b ]

dc
=
@#�[:]

@c
=

�x��Z
�x���

f�(x)dx > 0 for s 2 [0; 1):

As in the proof of Proposition 1, a marginal change in c a¤ects #�[:] only directly, but not

indirectly through changes in �x��(�x�; �x�; c); �x�(�x��; �x�; c); and �x�(�x��; �x�). Consequently, the

e¤ects on LHS(46)[:] in #�[:] are negligible and marginal changes in the three cutpoints are

independent from each other. Then, following along the same lines as the existence proof of

Proposition 1, it is straightforward to see that continuously increasing c creates one or more

continuous equilibrium paths of entry cutpoints [�x���(�x
�
� ; �x

�
�; c); �x

�
�(�x

�
��; �x

�
�; c)] with the following

properties (the case with one interior cutpoint is derived by simply setting �x��� = �1): (i) the

interior cutpoints get more extreme (at the boundary, �x��� = �1 remains), (ii) s��; s�; and thus

s decreases; and (iii) LHS(46) increases. Moreover, the endpoints of any path are at c0 (s = 1,
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where �x��� = �x
�
� = �x

�
min = �x

�
�) and at c (s = 0, where �x

�
�� = �1 and �x�� = 1), with

c0 � (s�)
n�1 1

n

"
b+

R 1
�xmin

f�(x)U(�xmin; x)dxR 1
�xmin

f�(x)dx

#
+ (s��)

n�1 ��

"
b+

R �xmin
�1 f�(x)U(�xmin; x)dxR �xmin

�1 f�(x)dx

#

+

n�1X
m�=2

�
n� 1
m� � 1

�
(s�)

m��1 (1� s�)n�m�
��
m�

"
b+

R 1
�xmin

f�(x)U(�xmin; x)dxR 1
�xmin

f�(x)dx

#

and

c0 � c � n� 1
n

�
b+max

�Z 1

�1
f�(x)U(�1; x)dx;

Z 1

�1
f�(x)U(1; x)dx

��
:

Note that while c0 is typically di¤erent from the c in expression (22) for private informa-

tion, we can use c in expression (24) as the cost boundary for "no entry", because in this

case one citizen is randomly determined to lead the community and it is straightforward to

see that the �rst term on the left-hand side of the best response entry strategy LHS(46) is

again equal to c. Then, by the Intermediate Value Theorem, at least one equilibrium path�
[�x���(�x

�
� ; �x

�
�; c); �x

�
�(�x

�
��; �x

�
�; c)]; �x

�
�(�x

�
��; �x

�
�)
�
must exist. Finally, for c � c0 and c � c, existence

(and uniqueness) is readily veri�ed for universal entry and universal abstention, respectively.

This completes our proof of existence for our citizen candidate model with directional informa-

tion about candidates�ideal points.

Finally, because for a given equilibrium path
��
�x���; �x

�
�

�
; �x��
�
properties (i) to (iii) hold, an

increase in the entry cost, c, or a decrease in the bene�ts from holding o¢ ce, b, will result in

more extreme entry cutpoints (for only one interior cutpoint, �x��� = �1 will remain) (cf. the

proof of Proposition 2). Similarly, it is readily veri�ed that if the community size, n, approaches

in�nity, only citizens with ideal points at the boundaries will enter as a candidate (cf. the proof

of Proposition 3). Note that limn!1 �x
�
� = 0 in this limit case.
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