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Disclaimer

This a not a textbook. These are lecture notes.
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1 Preferences

Let X be a metric space with metric d : X × X → R. We say that X is connected if it is not

the disjoint union of two closed sets. A good example to keep in mind is RL
+ = {(x1, . . . , xL) ∈

R
L : xi ≥ 0}. Our interpretation for X will usually be that of a consumption space, with each

x ∈ X a consumption bundle.

We will consider consumers that have preferences over X . A closed-contour preference

on X is a reflexive, transitive and complete binary relation ¹ such that for each x ∈ X the

upper contour set {x′ ∈ X : x¹ x′} and lower contour set {x′ ∈ X : x′ ¹ x} are closed subsets of X .

We say that ¹ is a closed preference if it is a closed subset of X × X ; that is if {(x, x′) : x ¹ x′}

is a closed subset of X × X . Every closed preference is closed-contour. To see this, suppose

that ¹ is closed. Then the lower contour set {x′ : x′ ¹ x} = {(w,w′) : w ¹ w′}∩ X × {x} is the

intersection of two closed sets, and is therefore closed. The upper contour sets are also closed

by an analogous argument.

We say that a preference ¹ on X is represented by a function u : X → R if x ¹ x′ iff

u(x)≤ u(x′). We will refer to such functions as utility functions.

Claim 1.1. If ¹ is represented by a continuous u : X →R then ¹ is closed.

Proof. Suppose xn ≤ x′n for n ∈ {1,2, . . .}. Then u(xn) ≤ u(x′n). If the two sequences converge

to x and x′ respectively, then u(x)≤ u(x′), and thus {(x, x′) : x ¹ x′} is closed.

We say that a subset Q ⊆ X is dense if for each x ∈ X there is a sequence (qn)n in Q with

limn qn = x. Equivalently, X is equal to the closure of Q. Recall that X is separable if it

admits a countable dense subset. An example of separable metrix space is given by RL.

Theorem 1.2 (Debreu). For every closed-contour preference ¹ on a separable, connected met-

ric space X there is a continuous function u : X →R that represents ¹.

An immediate corollary of this theorem is that a preference on a connected, separable

metric space is closed if and only if it is closed-contour. We will henceforth assume that all

preferences are closed (equivalently, contour-closed).

We say that a preference ¹ on a metric space X is locally non-satiated (LNS) if for every

x ∈ X and ε> 0 there is a x′ such that d(x, x′) < ε and x′ ≻ x. That is, every x can be strictly

improved by a small change.

Suppose now that X is a subset of RL. We say that ¹ is convex if the upper contour

set {x′ : x′ º x} is convex for all x ∈ X . We say that it is strictly convex if λw+ (1−λ)w′ ≻ x

whenever w º x, w′ º x, and λ ∈ (0,1).

Claim 1.3. If ¹ is convex then {x′ : x′ ≻ x} is convex for all x ∈ X .

Suppose X is convex. We will say that ¹ is convex* if

x′ ≻ x implies λx′+ (1−λ)x≻ x for all λ ∈ (0,1). (1.1)

The property of being convex* has a simple interpretation: if x′ is prefered to x, then moving

in a straight line away from x and towards x′ results in an improvement.
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Suppose that ¹ is represented by a utility u. What do convexity and convexity* mean

for u? That is, what properties of u correspond to these properties of ¹? Suppose that X is

convex. We say that u : X →R is concave if for all x, x′ ∈ X and λ ∈ (0,1)

u(λx+ (1−λ)x′)≥λu(x)+ (1−λ)u(x′).

We say that it is quasiconcave if

u(λx+ (1−λ)x′)≥min{u(x), u(x′)}. (1.2)

Clearly, if u is concave then it is quasiconcave, but not vice versa.

Claim 1.4. If X is convex and ¹ is represented by u : X →R then ¹ is convex if and only if u

is quasiconcave.

Proof. Assume that u is quasiconcave, and suppose that x′ º x and x′′ º x, so that u(x′)≥ u(x)

and u(x′′) ≥ u(x). By the quasiconcavity condition (1.2) x̂ = λx′+ (1−λ)x′′ satisfies u(x̂) ≥

min{u(x′), u(x′′)}≥ u(x), and so x̂º x. Thus ¹ is convex.

Assume now that ¹ is convex. Choose x, x′ ∈ X , and assume without loss of generality

that x ¹ x′, i.e. u(x) ≤ u(x′). Then by convexity x̂ = λx+ (1−λ)x′ satisfies x̂ º x, and u(x̂) ≥

u(x)=min{u(x), u(x′)}.

Claim 1.5. If X is convex and ¹ is convex* and represented by u then u is quasiconcave.

Proof. Suppose not, so that the quasiconvavity condition is violated for some x, x′ and λ.

Denote v(α) = u(αx+ (1−α)x′), and assume without loss of generality that v(0) ≤ v(1). By

assumption we have that v(λ) < v(0). It follows from the continuity of v that there is some

β ∈ (0,λ) such that v(λ) < v(β) < v(0) ≤ v(1). But since λ ∈ (β,1), it follows from (1.1) that

v(λ)> v(β), and we have reached a contradiction.

This claim in particular implies that for convex X , convexity* implies convexity. The

next claim implies that the opposite implication is not true in general.

Claim 1.6. Suppose X is convex, ¹ is convex*, and for every x ∈ X there exists x′ ∈ X with

x′ ≻ x. Then ¹ is LNS.

Proof. For each x ∈ X , let x′ ≻ x. The sequence xn =
n−1

n
x+ 1

n
x′ satisfies xn ≻ x and intersects

every ball around x.
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2 Prices and consumer choice

We consider a setting with L commodities {1, . . .,L}. A consumption space X is a subset of

R
L. Let ¹ be a preference on X .

A price vector p is an element of RL. Given p and wealth w ∈ R, the choice set X∗(p,w)

is given by

X∗(p,w)= {x ∈ X : p · x ≤ w and (p · x′ ≤ w implies x′ ¹ x)}. (2.1)

Equivalently, X∗(p,w) = {x ∈ X : p · x ≤ w and (x′ ≻ x implies p · x′ > w)}. That is, if a bundle

x is in X∗ it is affordable, and bundles that are better than x are not affordable. Note that

it is possible that there are other bundles that are as desirable as x and are affordable.

The next lemma shows that under LNS preferences, when x is chosen, then any x′ that

is at least as good as x must cost at least as much as x. Equivalently, if something costs less

than x then it is not as good.

Lemma 2.1. Suppose ¹ is LNS, and x∗ ∈ X∗(p,w). Then xº x∗ implies p · x ≥ w.

Proof. Suppose towards a contradiction that x º x∗ and p ·x < w. Then there is some ε small

enough so that p · x′ < w for all x′ such that ‖x− x′‖ ≤ ε. Since ¹ is LNS, there is some such

x′ such that x′ ≻ x. Hence x′ ≻ x∗, and so it is impossible that x∗ ∈ X∗(p,w).

Claim 2.2. Suppose X is convex. Fix a price vector p and w ∈ R, and suppose that there is

some x̂ ∈ X with p · x̂< w. If for x ∈ X with p · x≤ w it holds that x′ ≻ x implies p · x′ ≥ w, then

x ∈ X∗(p,w).

Proof. Let x′ ≻ x. We need to show that p ·x′ > w. Suppose p ·x′ ≤ w. Since ≺ is closed and X

is convex, for all λ small enough it holds that x′′ = (1−λ)x′+λx̂ ≻ x. But for λ small enough

it also holds that p · x′′ < w, in contradiction to the claim hypothesis.

6



3 Production

In a setting with L commodities, a production set Y is a subset of RL. Given a price vector

p, the optimal production set is

Y ∗(p)= {y ∈Y : p · y′ ≤ p · y for all y′ ∈Y }. (3.1)

That is, y is in Y ∗ if it maximizes the payoff p · y. The indirect utility is given by

vY (p)= sup
y∈Y

p · y. (3.2)

This is also known as the support function of Y . Note that if Y ∗(p) is non-empty then

vY (p)= p · y for all y ∈Y ∗(p).

For λ ≥ 0, we denote λY = {λy : y ∈ Y }. The Minkowski sum of two non-empty subsets

Y1,Y2 ⊆R
L is given by Y1 +Y2 = {y1 + y2 : y1 ∈Y1, y2 ∈Y2}. It is easy to see that

1. vλY =λvY .

2. vY1
+vY2

= vY1+Y2
.

The Minkowski sum of two closed sets is in general not closed. However, if Y1 is open,

then Y1 +Y2 is open for every non-empty Y2, since it is equal to the union of open sets
⋃

y2∈Y2
Y1 + {y2}.

We denote Minkowski subtraction by

Y1 −Y2 = {y1− y2 : y1 ∈Y1, y2 ∈Y2}.

Claim 3.1. Denote Y =Y1 +·· ·+YL. The following are equivalent:

1.
∑

j yj ∈Y ∗(p).

2. yj ∈Y ∗
j

(p) for j = 1, . . . , J.

Fix some price vector p, and let y ∈Y ∗(p). How does y change when we change p? That

is, if y′ ∈Y ∗(p′), what can we say about the relation between y and y′, given p and p′?

Claim 3.2. Let y ∈Y ∗(p) and y′ ∈Y ∗(p′). Denote ∆y= y′− y and ∆p = p′− p. Then

∆p ·∆y ≥ 0.

Proof. Since p · y′ ≤ p · y we have that

p ·∆y ≤ 0

Likewise, p′ · y′ ≥ p′ · y, and so

p′
·∆y≥ 0.

Subtracting the first from the second yields the desired result.
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4 Private ownership economies and Walrasian equilib-

ria

A private ownership economy consists of the following elements:

1. L commodities.

2. I consumers, each with a consumption set X i ⊂ R
L, a preference ¹i on X i, and an

endowment e i ∈R
L.

3. J firms, each with a production set Y j.

4. Each consumer i holds a stake θi j in firm j. We assume
∑

i θi j = 1 for all j.

An allocation is a pair ((xi)i, (yj) j) such that xi ∈ X i, yj ∈Y j and
∑

i xi =
∑

i e i +
∑

j yj. The

set of all allocations is denoted by A.

A Walrasian equilibrium consists of a price vector p together with consumption vectors

(xi)i and production vectors (yj) j such that

1. For all i, xi ∈ X∗
i
(p,wi), where wi = p · e i +

∑

j θi j p · yj.

2. For all j, yj ∈Y ∗
j

(p).

3. ((xi)i, (yj) j) is an allocation.

We say that (xi)i is Pareto optimal if there exists no allocation ((x′
i
)i, (y′

i
)i) such that

x′
i
º xi for all i, and x′

ℓ
≻ xℓ for some ℓ.

Theorem 4.1 (First Welfare Theorem). Suppose each ¹i is LNS, and that p, (xi)i and (yj) j

form an equilibrium. Then xi is Pareto optimal.

Proof. Suppose xi is not Pareto optimal. Then there exists an allocation ((x′
i
)i, (y′

j
) j) such

that x′
i
º xi for all i, and x′

ℓ
≻ xℓ for some ℓ. Then, by the first equilibrium condition, p · x′

ℓ
>

wi, and by Lemma 2.1, p · x′
i
≥ wi for all i. Thus

∑

i

p · x′i >
∑

i

wi.

Substituting the definition of wi yields

∑

i

p · x′i >
∑

i

(

p · e i +
∑

j

θi j p · yj

)

.

Since yj ∈Y ∗
j

(p), we know that p · yj ≥ p · y′
j

by the second equilibrium condition, and so

∑

i

p · x′i >
∑

i

(

p · e i +
∑

j

θi j p · y′j

)

.
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Taking p out of the parentheses yields

p ·

(

∑

i

x′i

)

> p ·

(

∑

i

(

e i +
∑

j

θi j y
′
j

))

,

and then changing the order of summation we arrive at

p ·

(

∑

i

x′i

)

> p ·

(

∑

i

e i +
∑

j

y′j

∑

i

θi j

)

.

Recall that
∑

i θi j = 1, and so

p ·

(

∑

i

x′i

)

> p ·

(

∑

i

e i +
∑

j

y′j

)

,

which contradicts the assumption that ((x′
i
)i, (y′

j
) j) is an allocation.

Exercise: study a two commodity, two agent exchange economy using an Edgeworth box.

Understand offer curves. See example of multiple equilibria and no equilibria.
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5 Walrasian equilibria with transfers

A Walrasian equilibrium with transfers consists of a price vector p and a transfers vector t,

together with consumption vectors (xi)i and production vectors (yj) j such that

1. For all i, xi ∈ X∗
i
(p,wi), where wi = t i + p · e i +

∑

j θi j p · yj .

2. For all j, yj ∈Y ∗
j

(p).

3. ((xi)i, (yj) j) is an allocation.

4.
∑

i t i = 0.

A Walrasian quasi-equilibrium with transfers consists of a price vector p and a transfers

vector t, together with consumption vectors (xi)i and production vectors (yj) j such that

1. For all i, p · xi ≤ wi, and x′
i
≻i xi implies p · x′

i
≥ wi, where wi = t i + p · e i +

∑

j θi j p · yj .

2. For all j, yj ∈Y ∗
j

(p).

3. ((xi)i, (yj) j) is an allocation.

4.
∑

i t i = 0.

Theorem 5.1 (Second Welfare Theorem). Suppose that each ¹i is LNS and convex, each X i

and Y j is convex, ((xi)i, (yj) j) is an allocation, and that (xi)i is Pareto optimal. Then there

exists a price vector p and a transfer vector t such that p, t, (xi)i and (yj) j form a quasi-

equilibrium with transfers, and an equilibrium under the additional assumption that each

xi is in the interior of X i.

Proof. Denote x =
∑

i xi, y =
∑

j yj and e =
∑

i e i. Let X+
i
= {x′

i
: x′

i
≻ xi}. Note that this is a

non-empty set since ¹i is LNS, an open set since ¹ is closed, and a convex set, by Claim 1.3.

Denote

X+
=

∑

i

X+
i .

As a Minkowski sum of convex sets, X+ is also convex. Furthermore, as a sum of open sets

it is open.

Likewise, denote

Ŷ = {e}+
∑

j

Y j,

and note that Ŷ is convex.

We claim that X+ and Ŷ are disjoint. Suppose not, so that there is some (x+
i
)i and (yj) j

such that
∑

i x+
i
= e+

∑

j yj. But then this is an allocation with consumptions that strictly

dominates (xi)i for each i, which contradicts the assumption that (xi)i is Pareto optimal.
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It follows that by the Separating Hyperplane Theorem there is some (nonzero) price

vector p ∈ RL and a w ∈ R such that p · (e+ y) ≤ w for all e+ y ∈ Ŷ and such that p · x+ > w

for all x+ ∈ X+. Fix some such p. Note that x ∈ Ŷ , since ((xi)i, (yj) j) is an allocation. Hence

p ·x ≤ w. On the other hand, by LNS, x is in the closure of X+ and so p ·x≥ w. We thus have

that w = p · x. Since ((xi)i, (yj) j) is an allocation, w = p · (e+ y).

We claim first that yj ∈Y ∗
j

(p) for all j. By Claim 3.1, this is equivalent to p · y′ ≤ p · y for

any y′ ∈
∑

j Y j. This in turn is equivalent to p · (e+ y′)≤ p · (e+ y) = w, which we have already

shown above.

Let

t i = p · xi − (p · e i +
∑

j

θi j p · yj).

Then

∑

t i = p · x− (p · e+
∑

i

∑

j

θi j p · yj)= p · x− (p · e+
∑

j

p · yj)= 0,

where the first equality is a substitution of the definitions of x and e, the second a conse-

quence of
∑

i θi j = 1, and the third follows because ((xi)i, (yj) j) is an allocation.

By our definition of t i, p · xi = wi. To show that we have constructed a quasi-equilibrium

we show that if x′
i
≻i xi then p · x′

i
≥ wi. Suppose towards a contradiction that there is an

x+
ℓ
∈ Xℓ such that x+

ℓ
≻ℓ xℓ and p · x+

ℓ
< wℓ−ε for some ε > 0. By LNS, we can find for each

i 6= ℓ an x+
i
∈ X i such that x+

i
≻i xi and p · x+

i
< wi +ε/I. It follows that

p ·
∑

i

x+i < p ·
∑

i

xi.

Denote x+ =
∑

i x+
i
. Then x+ ∈ X+, and yet p · x+ < p · x = p · e, and so we have reached a

contradiction. Thus we have constructed a quasi-equilibrium.

Finally, suppose that each xi is an interior point. Then for each xi there is an x̂i such

that p · x̂i < wi; here we used the fact that p is nonzero. It thus follows from Claim 2.2 that

xi ∈ X∗(p,wi), and so we have an equilibrium.
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6 Excess demand

Consider a private ownership economy. We denote X =
∑

i X i, Y =
∑

j Y j and
∑

i e i = e. Let p

be a price vector. Recall that consumer i with wealth wi will consume a bundle in X∗
i
(p,w).

Recall also that Y ∗
j

(p) is the set of all y∗
j
∈Y j that maximize p · yj . Note that p · y∗

j
= p · ȳ∗

j
for

all y∗
j
, ȳ∗

j
∈Y ∗

j
(p), and so p ·Y ∗

j
(p) is well defined, as long as Y ∗

j
(p) is non-empty. The wealth

of consumer i depends on p and is given by

wi(p)= p · e i +
∑

j

θi j p ·Y ∗
j (p).

The set of optimal consumption bundles can thus be written as depending on p alone:

X∗
i (p)= X∗

i (p,wi(p)).

Let

X∗(p)=
∑

i

X∗
i (p) and Y ∗(p)=

∑

j

Y ∗
j (p).

We define the excess demand at price p by

Z∗(p)= X∗(p)−Y ∗(p)− e.

The excess demand at rice p is a set of consumption bundles. Each corresponds to a possible

total amount that is consumed at that price, in excess of the total available (produced plus

endowed).

We note that for some p either X∗
i
(p) or Y ∗

j
(p) might be empty, in which case Z∗(p) is

also empty. We denote by P the set of prices for which Z∗(p) is non-empty.

It is easy to see that if t is a positive number, and if p ∈ P , then Z∗(tp) = Z∗(t). If all

prices are multiplied by a positive constant then neither producers nor consumers change

their behavior: X∗
i
(tp)= X∗

i
(p) and Y ∗

j
(tp)=Y ∗

j
(p). Thus also Z∗(tp)= Z∗(p). A function or

correspondence with this property is called homogeneous of degree zero.

Claim 6.1 (Walras’s Law). p · z ≤ 0 for all z ∈ Z∗(p). If we furthermore assume that each ¹i

is LNS, then this holds with equality.

Proof. Let z =
∑

i x∗
i
−

∑

j y∗
j
−

∑

i e i, with x∗
i
∈ X∗

i
(p) and y∗

j
∈Y ∗

j
(p). Then by the definition of

X∗
i

we have that

p · x∗i ≤ wi = p · e i +
∑

j

θi j p · y∗j (p).

Summing over i yields

p ·
∑

i

x∗i ≤ p ·
∑

i

e i +
∑

i

∑

j

θi j p · y∗j (p).
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Since
∑

i θi j = 1 for all j, this implies

p ·
∑

i

x∗i ≤ p ·
∑

i

e i + p ·
∑

j

y∗j (p),

or

p · z ≤ 0.

Finally, by Lemma 2.1, all the above inequalities hold with equality when each ¹i is LNS.

We say that there is free disposal if Y contains RL
−.

Claim 6.2. If there is free disposal then P ⊆RL
+.

Proof. Choose any p with pℓ < 0 for some commodity ℓ, and let yn ∈Y equal −n in coordinate

ℓ, and vanish in the remaining coordinates. Then p · yn = |pℓ| ·n, and so there is no y∗ ∈ Y

that maximizes p · y in Y . Thus Y ∗(p) is empty, and so Z∗(p) is empty.

Clearly, an equilibrium exists iff there is a p such that 0 ∈ Z∗(p). The next claim shows

that under some conditions, it suffices that Z∗(p) has an element in RL
−.

Claim 6.3. If there is free disposal (i.e., Y ⊇ RL
−), if Y is convex, and if each ¹i is LNS, then

an equilibrium exists iff there is a p such that Z∗(p) intersects RL
−.

Proof. If there is an equilibrium p, (xi)i, (yj) j then z =
∑

i xi −
∑

j yj −
∑

i e i = 0 is in Z∗(p), by

definition. Hence Z∗(p) intersects RL
−.

Suppose z ∈ Z∗(p) and z ∈RL
−, and write z = x− y− e, with x=

∑

i xi, xi ∈ X∗
i
(p,wi(p)), and

y=
∑

j yj, yj ∈Y ∗
j

(p). Let y′ = y+ z, and note that y′ ∈Y , since Y ⊇−RL and Y is convex. By

Claim 6.1, p · z = 0. Hence

p · y′ = p · y+ p · z = p · y,

and so y′ ∈Y ∗(p). Let z′ = x− y′− e, and note that z′ ∈ Z∗(p). Finally,

z′ = x− y′− e = x− (y+ z)− e = x− (y+ x− y− e)− e = 0.

Hence p, (xi)i and (y′
j
) j form an equilibrium.
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7 Compactifying the economy

Recall that an allocation ((xi)i, (yj) j) is an element of (
∏

i X i)×(
∏

j Yk) such that
∑

i xi =
∑

i e i+
∑

j yj, and that the set of all allocations is denoted by A.

Claim 7.1. Suppose that Y ∩RL
+ = {0}, Y ∩ (−Y ) = {0}, Y is convex and X i ⊆ R

L
+. Then A is

bounded.

Proof. Note that if Y ′
j

is a superset of Y j and X ′
i

is a superset of X i, then the corresponding

A′ contains A. We can thus always enlarge X i and Y j without loss of generality. We will

accordingly assume that X i = R
L
+ and that each Y j is a closed cone, by adding to it any

elements of the form λyj, for λ> 0 and yj ∈Y j, and taking the closure.

Suppose towards a contradiction that for every n we can find an = ((xn
i
)i, (yn

j
) j) such that

an ∈ A and

‖an
‖

2
=

∑

i

‖xn
i ‖

2
+

∑

j

‖yn
j ‖

2

tends to infinity. Since each X i and Y j are cones,

x̂n
i = xn

i /‖an
‖ and ŷn

i = yn
j /‖an

‖

are both also in X i and Y j respectively. The sequence ân = ((x̂n
i
)i, ( ŷn

j
) j) of unit vectors has

a converging subsequence, and so we assume without loss of generality that it converges to

some unit vector â = ((x̂i)i, ( ŷj) j). Since X i and Y j are closed we have that x̂i ∈ X i and ŷj ∈Y j.

Since xn − yn = e, x̂n − ŷn = e/‖a‖, and so x̂− ŷ= 0.

Since Y∩X = {0} we get that x̂ = ŷ= 0. It follow immediately that x̂i = 0 for all i. We claim

that likewise ŷj = 0 for all j. Otherwise, suppose yℓ 6= 0. Then
∑

j 6=ℓ yj =−yℓ. Since each Y j

is a cone, yℓ and −yℓ are both in Y , in contradiction to the assumption that Y ∩ (−Y ) = {0}.

We have thus shown that â= 0, in contradiction to the fact that â is a unit vector.

Proposition 7.2. Suppose that each Y j and X i is convex, each ¹i is convex*, and that A is

bounded. Let K be a compact convex set whose interior contains A. Define a “hat” private

ownership economy by X̂ i = K ∩ X i and Ŷi = K ∩Yi, with all other elements remaining the

same. Then every equilibrium of the hat economy is an equilibrium of the original economy.

Proof. Suppose p, (x̂i)i and ( ŷi)i form an equilibrium of the hat economy. Clearly x̂ = ŷ− e,

and so it remains to be shown that x̂i ∈ X∗
i
(p) and ŷj ∈Y ∗

j
(p).

Suppose x̂i 6∈ X∗
i
(p), so that there is some xi ∈ X i such that xi ≻i x̂i and p · xi ≤ wi. Since

x̂i is in the interior of K , it follows from the assumption that X i is convex that for λ small

enough x′
i

:= λxi + (1−λ)x̂i is in X̂ i. But then x′
i
≻i x̂, since ¹i is convex*, while clearly

p · x′
i
≤ wi. So x̂i 6∈ X̂∗

i
(p).

Finally, suppose that ŷj 6∈ Y ∗
j

(p). By an analogous argument there is some y′
j
∈ Ŷ j such

that p · y′
j
> p · ŷj, and so ŷj 6∈ Ŷ ∗

j
(p).
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8 Kakutani’s Theorem and Debreu’s Theorem

Let A,B be subsets of Rn,Rm. A correspondence Γ : A → B is a map that assigns to each

a ∈ A a subset Γ(a)⊆ B. We say that Γ is nonempty / closed / convex if each Γ(a) is nonempty

/ closed / convex.

A correspondence Γ : A → B is upper hemicontinuous at a if for all an → a and bn → b

such that bn ∈Γ(an) it holds that b ∈Γ(a). Note that this implies that Γ(a) is closed for every

a, by taking an = a. It is said to be upper-hemicontinuous if it is upper-hemicontinuous at

all a ∈ A.

Claim 8.1. A correspondence Γ : A → B is upper hemicontinuous iff its graph {(a, b) : b ∈Γ(a)}

is a closed subset of A×B.

Proof. Suppose Γ is upper hemicontinuous, and consider a converging sequence (an, bn) →

(a, b) in its graph. Then upper hemicontinuity implies that (a, b) is also in the graph. Hence

the graph is closed.

Conversely, suppose the graph is closed, and consider an → a and bn → b such that

bn ∈ Γ(an). Since the graph is closed, (a, b) is in the graph, i.e., b ∈Γ(a).

A fixed point of a correspondence Γ : A → A is a ∈ A such that a ∈Γ(a).

Theorem 8.2 (Kakutani). Let A be a compact convex subset of Rn, and let Γ : A → A be a

nonempty, upper-hemicontinuous, convex correspondence. Then Γ has a fixed point.

Denote ∆L = {p ∈RL
+ :

∑

ℓ pℓ = 1}. In the next claim we “forget” all we know about Z∗, and

only assume what is explicitly written.

Theorem 8.3 (Debreu). Let C be a compact convex subset of RL. Suppose that a correspon-

dence Z∗ : ∆L → C is nonempty, upper-hemicontinuous, convex, and satisfies p · z ≤ 0 for all

z ∈ Z∗(p). Then there is a p ∈∆L and a z ∈ Z∗(p) such that z ∈−RL.

Proof. Define the correspondence M : C → ∆L by M(z) = argmaxp p · z. That is, M(z) is the

set of p that maximize p · z. Since ∆L is compact and convex, it is easy to see that M is

upper-hemicontinuous, non-empty and convex.

Let Γ : ∆L ×C →∆L ×C be the correspondence given by Γ(p, z)= M(z)×Z∗(p). It is again

easy to see that the domain ∆L ×C is compact and convex and that Γ is nonempty, upper-

hemicontinuous and convex. Thus, by Kakutani’s Theorem, it has a fixed point (p, z). That

is, there are p and z such that

p ∈ M(z) and z ∈ Z∗(p).

Since p ∈ M(z), p′ · z ≤ p · z for any p′ ∈∆L. And since z ∈ Z∗(p), p · z ≤ 0. Hence p′ · z ≤ 0 for

any p ∈∆L, and so z ∈RL
−.
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9 Existence of equilibria

To prove the existence of equilibria we will use Theorem 8.3. It requires compactness; that

will be provided by Claim 7.1 and Proposition 7.2. It also requires upper-hemicontinuity.

Proposition 9.1. If Y is compact then the correspondence Y ∗ is upper-hemicontinuous.

Suppose furthermore that Y is convex, each X i is compact and convex, each ºi is convex*

and LNS, and e i is in the interior of X i. Then the correspondence Z∗ is nonempty, upper-

semicontinuous and convex.

Theorem 9.2. Suppose each X i is a closed, convex subset of RL
+, each ºi is convex* and LNS,

each e i is in the interior of X i, Y ∩RL
+ = {0}, Y ∩ (−Y ) = {0}, Y is convex, and there is free

disposal. Then there exists an equilibrium.

Proof. By Claim 7.1 A is bounded. Hence by Proposition 7.2 any equilibrium of the hat

economy is an equilibrium of the original economy. We can thus assume henceforth that

each X i is compact, as is Y . By Proposition 9.1 the excess demand correspondence Z∗ is

upper-hemicontinuous and convex. By Claim 6.1 it satisfies Walras’s Law. We can therefore

apply Theorem 8.3 to conclude that there is some z ∈ RL
− such that z ∈ Z∗(p). Thus, by

Claim 6.3 there exists an equilibrium.
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10 Approximate equilibria

In this section we consider exchange economies, with I consumers and L goods, as usual.

We will start by proving an existence theorem for equilibria, under strong conditions.

Theorem 10.1. Consider an exchange economy with each X i = [0, x]L for some x, and with

strictly monotone and convex preferences. Suppose also that each e i is in the interior of X i.

Then there exists an equilibrium with prices p ≫ 0.

Proof. Recall that we denote ∆L = {p ∈ RL
+ :

∑

ℓ pℓ = 1}. For each p ∈ ∆L, the set of feasible

consumption bundles {xi ∈ X i : p·xi ≤ p·e i} is compact and non-empty. Since preferences are

convex and X i is compact, X∗
i
(p) = X∗

i
(p, p ·w) is compact, convex, and non-empty, and so

is the excess demand Z∗(p) =
∑

i X∗
i
(p)−

∑

i e i, which is furthermore upper-hemicontinuous

since each e i is internal (see Proposition 9.1). Since preferences are strictly monotone they

are LNS, and thus Walras’s Law implies that p ·z = 0 for all z ∈ Z∗(p). By Theorem 8.3 there

is a p such that Z∗(p)∩RL
− is non-empty. Note that it must be that p ≫ 0, since preferences

are strictly monotone, and thus if pℓ = 0 for some commodity ℓ then X∗
i
(p) will only include

elements in which the demand for good ℓ is equal to x (i.e., the maximal possible), but then,

since e i is internal, the demand for ℓ will exceed supply, and it would be impossible that

Z∗(p) includes elements of RL
−.

It follows that there are (xi)i such that xi ∈ X∗
i
(p), and

∑

i(xi−e i) ∈R
L
−. To finish the proof

we show that this sum vanishes. Assume it does not. Then, since p ≫ 0, p ·
∑

i(xi − e i) < 0.

But by LNS we know that p · xi = p · e i , and thus we have reached a contradiction.

An approximate equilibrium consists of a price vector p together with consumption vec-

tors (xi)i such that

1. For all i, p · xi ≤ p · e i .

2. For all i except at most L, xi ∈ X∗
i
(p, p · e i).

3. (xi)i is an allocation:
∑

i xi =
∑

i e i.

Theorem 10.2. Consider an exchange economy with each X i = [0, x]L for some x, and with

strictly monotone preferences. Suppose also that each e i is in the interior of X i. Then there

exists an approximate equilibrium with prices p ≫ 0.

The only difference between this Theorem and Theorem 10.1 is that there is no assump-

tion that preferences are convex. This implies that there will not always be an equilibrium.

Proof of Theorem 10.2. By our assumptions Z∗ is a non-empty, compact correspondence,

which is furthermore upper-hemicontinuous (see Proposition 9.1). However, since we have

not assumed that preferences are convex, there will not necessarily be an equilibrium. I.e.,

there is not necessarily a price vector p such that 0 ∈ Z∗(p). Denote by Z∗
c (p) the convex

hull of Z∗(p). Then clearly Z∗
c is a non-empty, compact, convex, upper-hemicontinuous cor-

respondence. Thus, as in the proof of Theorem 10.1, there must exist a p ≫ 0 such that

0 ∈ Z∗
c (p).
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To finish the proof, we will need the following result, which we will prove later. We

denote by Conv(A) the convex hull of a set A.

Lemma 10.3 (Shapley-Folkman). Let A1, . . . , AK be subsets of RL, and suppose that x ∈

Conv(A1 +·· ·+ AK ). Then there exist a1, . . . ,ak such that

1. ai ∈Conv(A i) for all i,

2. ai ∈ A i for all but L values of i,

3. x= a1 +·· ·+aK .

Applying the lemma to 0 ∈ Z∗
c (p) =

∑

i X∗
i
(p)− e i, we can conclude that there are (zi)i

such that

1. zi ∈Conv(X∗
i
(p)− e i).

2. zi ∈ X∗
i
(p)− e i for all but L consumers i.

3. 0=
∑

i zi.

Denoting xi = zi + e i, this implies that

1. xi ∈Conv(X∗
i
(p)), and hence p · xi ≤ p · e i .

2. xi ∈ X∗
i
(p) for all but L consumers i.

3.
∑

i xi =
∑

i e i.

Thus (xi)i and p form an approximate equilibrium.

We now turn to prove Lemma 10.3. This result is in fact a generalization of the Carathéodory

Theorem for convex hulls.

Theorem 10.4 (Carathéodory). Suppose a ∈ Conv(A) ⊆RL. Then a is a convex combination

of at most L+1 elements of A.

Proof. Suppose that a is the convex combination
∑

ℓλℓaℓ of {a1, . . . ,an} ⊆ A, and that n is

the minimal such that is possible. In particular, this means that λℓ > 0.

Define the linear map Φ : Rn →R
L ×R by

Φ(x1, . . . , xn)=

(

∑

ℓ

xℓaℓ,
∑

ℓ

xℓ

)

.

The kernel of Φ (i.e., {x ∈Rn : Φ(x)= (0,0)}) has dimension at least n−(L+1). Assume towards

a contradiction that n > L+1. Then this dimension is positive, and there is some nonzero

x ∈ RK such that
∑

ℓ xℓaℓ = 0 =
∑

ℓ xℓ. By multiplying x by a constant we can furthermore
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require that (x+λ)ℓ ≥ 0 for all i (since λ>> 0) and that (x+λ)ℓ = 0 for some i. Denote η= x+λ.

Then

∑

ℓ

ηℓaℓ =
∑

ℓ

xℓaℓ+
∑

ℓ

λℓaℓ = a

and

∑

ℓ

ηℓ =
∑

ℓ

xℓ+
∑

ℓ

λℓ = 1,

so that a is a convex combination of less than n elements of A, and we have reached a

contradiction.

Proof of Lemma 10.3. We note first that Conv(A1 + ·· · + AK ) = Conv(A1) + ·· · + Conv(AK ).

Thus x =
∑

i ai where ai ∈Conv(A i). Suppose each ai is a convex combination ai = λi,1ai,1 +

·· ·+λi,ni
ai,ni

of elements of A i, and that this representation minimizes the total number of

coefficients n =
∑

i n i. This means that λi, j > 0 for all i, j.

Define the linear map Φ : Rn1 ×·· ·×RnK →R
L ×RK by

Φ(x1, . . . , xK )=

(

∑

i

ni
∑

ℓ=1

xi,ℓai,ℓ,
∑

ℓ

x1,ℓ, . . . ,
∑

ℓ

xK ,ℓ

)

.

The kernel of Φ has dimension at least n− (L+K ). By an argument analogous to the one in

Theorem 10.4 we conclude that n ≤ L+K , as n > L+K implies that there is some (x1, . . . , xK )

such that

∑

i

ni
∑

ℓ=1

xi,ℓai,ℓ = 0=
∑

ℓ

x1,ℓ = ·· · =
∑

ℓ

xK ,ℓ,

which, after multiplication by a constant can be added to λ to yield convex combinations

with a combined smaller support.

Finally, it follows from n ≤ L+K and the pigeon hole principle that there are at least

K −L values of i such that n i = 1, and hence, for these i, ai ∈ A i.

A nice related theorem is the following.

Theorem 10.5 (Kirchberger). Let A (“sheep”) and B (“wolves”) be finite subsets of R2. Sup-

pose that for every C ⊆ A∪B of size 4 there is a line that strictly separates A∩C from B∩C

(i.e., the sheep in C can be separated from the wolves in C by a straight fence). Then A can be

strictly separated by a line from B (the sheep can be separated from the wolves by a straight

fence).
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11 Scitovsky contours

Consider an exchange economy with each ºi convex. The Scitovsky contour of (xi)i is

S(x1, . . . , xI)=
∑

i

{x′i : x′i ºi xi}.

That is S is the set of all total consumptions that can be decomposed into individual con-

sumptions that are at least as good as (xi)i.

Suppose (xi)i and p form an equilibrium, so that p · x′ ≥ p · x for every x′ ∈ S(x1, . . . , xI). It

follows that if p ·x > p · x̂ then, for any (x̂i)i such that x̂=
∑

i x̂i, there must be some consumer

i for whom xi ≻i x̂i.

The lesson is that if current total consumption is x and prices are at p, then an alterna-

tive total consumption x̂ can be ruled out (on the grounds of making someone worse off) just

by considering the value of this consumption in terms of p, without any knowledge of the

preferences.
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12 The core

Given vectors a, b ∈ Rn, we denote a ≥ b if ai ≥ b i for all coordinates i, we denote a > b if

a≥ b and a 6= b, and denote a≫ b if ai > b i for all i.

In this section we will consider an exchange economy in which X i =R
+
L

, e i ≫ 0, and ºi is

closed, strictly convex and strictly monotone: if x′
i
> xi then x′

i
≻i xi. Note that this implies

that preferences are LNS.

A coalition is a subset S of the consumers. A partial allocation is (x′
i
)i∈S such that each

xi ∈ X i and
∑

i∈S x′
i
=

∑

i∈S e i.

Consider an allocation (xi)i . We say that a coalition S blocks (xi)i if there is a partial

allocation (x′
i
)i∈S such that x′

i
≻i xi for all i ∈ S. We say that a coalition S weakly blocks (xi)i

if there is a partial allocation (x′
i
)i∈S such that x′

i
ºi xi for all i ∈ S, and x′

ℓ
≻ℓ xℓ for some

ℓ ∈ S.

Claim 12.1. S blocks (xi)i iff it weakly blocks it.

Proof. Clearly blocking implies weak blocking. For the other direction, assume (x′
i
)i∈S wit-

nesses that S weakly blocks (xi)i, and that x′
ℓ
≻ℓ xℓ. Since preferences are closed, for ε> 0

small enough it holds that (1−ε)x′
ℓ
≻ℓ xℓ.

Let x̄ℓ = (1−ε)x′
ℓ
, and for the rest of the i ∈ S let x̄i = x′

i
+

ε
|S|−1

x′
ℓ
. Then

∑

i∈S x̄i =
∑

i∈S x′
i
,

and so x̄i is an allocation. Furthermore, by strict monotonicity, x̄i ≻i x̄i, and so S blocks

(xi)i.

The core of the economy is the set of allocations that are not blocked by any coalition.

Claim 12.2. Suppose (xi)i and p form an equilibrium. Then (xi)i is in the core.

Proof. Suppose not, so that the partial allocation (x′
i
)i∈S witnesses that S blocks (xi)i. Since

x′
i
≻i xi, it follows from the equilibrium condition that p · x′

i
> p · xi . Since preferences are

LNS, p · xi = p · e i (Lemma 2.1) and so p · x′
i
> p · e i. Thus

∑

i∈S

p · x′i >
∑

i∈S

p · e i ,

in contradiction to the partial allocation condition
∑

i∈S x′
i
=

∑

i∈S e i.

In general, not every element of the core belongs to an equilibrium. For example, in a

two consumer economy, every allocation (xi)i that is Pareto optimal (i.e., not blocked by the

coalition of both consumers) and satisfies xi ºi e i (i.e., not blocked by a single consumer) is

in the core.

The Nth replica economy has N·I consumers, with each consumer of the original economy

duplicated N times. Each duplicate has the same endowment and preference as the original.

We index consumers by (i, n), where i ∈ {1, . . ., I} and n ∈ {1, . . ., N}. Thus e i,n = e i and ºi,n=ºi.

Proposition 12.3. Let (xi,n)i,n be in the core of the Nth replica economy. Then xi,n = xi,n′ for

all i, n, n′.
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Proof. For each i, fix n(i) such that xi,n(i) is ºi-minimal. For i ∈ I, let

x′i =
1

N

N
∑

n=1

xi,n,

and let x′
i,n

= x′
i

for all n ∈ {1, . . ., N}.

Let S = {(i, n(i)) : i ∈ {1, . . ., I}}. Suppose that xℓ,n 6= xℓ,n′ for some ℓ, n, n′. Note that

x′
i,n(i)

ºi xi,n(i), with strict inequality for i = ℓ, by strict convexity. Thus, to prove that S

blocks (xi)i, it remains to be shown that (x′
i
)i∈S is a partial allocation:

∑

(i,n(i))∈S

x′i,n(i) =
∑

i

x′i =
∑

i

1

N

∑

n

xi,n =
1

N

∑

i

∑

n

xi,n =
1

N

∑

i,n

e i =
∑

i

e i =
∑

(i,n(i))∈S

e i.

Given Proposition 12.3, we can identify every element of the core of the replica economy

with an allocation of the original economy. Indeed, this allocation will be in the core of the

original economy. More generally, the core of the Nth replica economy will contain the core

of the N +1th replica economy.

Theorem 12.4 (Debreu-Scarf). Suppose that (xi)i is in the core of the Nth replica economy for

all N. Then there exists a price vector p such that (xi)i and p form a Walrasian equilibrium.

Proof. Let (xi)i be in the core of the Nth replica economy for all N. Let Pi = {x̄i− e i : x̄i ≻i xi}.

Let P be the convex hull of ∪iPi. Since each Pi is convex, P is the set of all z such that there

exist αi ≥ 0,
∑

iαi = 1 and x̄i − e i ∈ Pi with z =
∑

iαi(x̄i − e i). Since P is open ∪iPi is open,

and P is open.

We show below that P does not contain 0. Then, by the Separating Hyperplane Theorem

there is some nonzero price vector p ∈ RL such that pz > 0 for all z ∈ P. We claim that

(xi)i and p form an equilibrium. Since (xi)i is an allocation, we only need to show that

xi ∈ X∗
i
(p, p · e i) for all i.

Suppse x̄i ≻i xi. Then x̄i − e i ∈ Pi, and so x̄i − e i ∈ P. Hence p(x̄i − e i) > 0, and px̄i > pe i.

Thus any bundle that is better than xi is not affordable. We next show that xi is affordable:

pxi = pe i. By LNS, continuity and strict monotonicity we can find a sequence (xm
i

)m such

that xm
i
≻i xi and limm xm

i
= xi. Then pxm

i
> pe i, and so pxi ≥ pe i. But (xi)i is an allocation,

and so p
∑

i xi = p
∑

i e i. Thus pxi = e i. This proves that xi ∈ X∗
i
(p, p · e i), and so we have

shown that (xi)i and p form an equilibrium.

It remains to be shown that P does not contain 0. Suppose it does. Then, since P is open,

it also contains some z ∈ RL
−. Hence there are x̄i − e i ∈ Pi and αi such that z ∈ RL

− is equal

to the convex combination
∑

iαi(x̄i − e i). Since each Pi is open, we can further assume that

each αi is rational, so that αi = k i/N for some k i and common denominator N. Note that
∑

i k i = N.

Consider the Nth replica economy, and a coalition S of size N that consists of k i con-

sumers of each type i. For (i, n) ∈ S, let x′
i,n

= x̄i − z. Since z ∈ RL
−, by monotonicity we have
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that x′
i,n

≻i x̄i. Since x̄i − e i ∈ Pi, x̄i ≻i xi, and so x′
i,n

≻i xi. To show that S blocks (xi)i, it

remains to be shown that (x′
i,n

)i,n is a partial allocation:

∑

(i,n)∈S

x′i,n =
∑

i

k i(x̄i − z)=
∑

i

k i x̄i −
∑

i

k i

∑

j

k j

N
(x̄ j − e j)=

∑

i

k i x̄i −
∑

j

k j(x̄ j − e j)=
∑

( j,n)∈S

e j,n.

We thus conclude that 0 6∈ P.
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13 The core via approximate equilibria

Consider an exchange economy, an allocation (xi)i and a price vector p. To quantify how far

(xi)i and p are from forming an equilibrium, we consider two quantities. First, we denote by

η i the amount by which i exceeds her budget:

η i =max{p · (xi − e i),0},

and by η =
1
I

∑

i η i the average amount by which the consumers exceed their budgets. Note

that η= 0 if and only if each consumer satisfies her budget contraint.

In equilibrium, it is impossible that a consumer chooses xi, but strictly prefers some

affordable x′
i

to xi. We denote by ζi the amount of money that i could waste while improving

her consumption:

ζi = sup
x′

i
≻i xi

max
{

p · (e i − x′i),0
}

,

and by ζ= 1
I
ζi the average of these amounts.

Note that an allocation (xi)i is a quasi-equilibrium if and only if η i = 0 and ζi = 0. Thus

η i and ζi quantify the extent by which consumer i violates the quasi-equilibrium conditions.

Theorem 13.1. Consider an exchange economy with X i = R
L
+, strictly monotone preferences,

and
∑

i e i ≫ 0. Denote

M = L ·max
i,ℓ

e i,ℓ.

For every (xi)i in the core there exists a p ∈∆L such that η≤
M
I

and ζ≤ M
I

.

To prove this theorem, let (xi)i be in the core. Let

Bi = {x′i − e i : x′i ≻i xi}∪ {0},

and let B =
∑

i Bi.

Lemma 13.2. B∩RL
− = {0}.

Proof. Fix b =
∑

i b i ∈ B, with b i ∈ Bi. Let S denote those consumers for which b i 6= 0. For

the rest b i = 0, and so b =
∑

i∈S b i. By the definition of Bi, b =
∑

i∈S x′
i
− e i, for some x′

i
≻i xi.

Since x is in the core, S cannot be a blocking coalition, and thus either S is empty, or else

(x′
i
)i∈S is not a partial allocation. In the former case b = 0, and we are done. In the latter

case, b 6= 0. Suppose towards a contradiction that b ∈ RL
−. Let x′′

k
= x′

k
− b for some k ∈ S,

for for all other i ∈ S let x′′
i
= x′

i
. Then

∑

i∈S x′′
i
= −b+

∑

i∈S x′
i
= 0, and (x′′

i
)i∈S is a partial

allocation. Since preferences are monotone, x′′
i
≻i xi, and so S is a blocking coalition, and we

have reached a contradiction.

The next lemma shows that a slightly weaker statement holds for the convex hull of B.

Denote m= (M, M, . . . , M) ∈RL.
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Lemma 13.3. Conv(B+m)∩RL
− ⊆ {0}.

Proof. Fix b =
∑

i b i ∈ B. By the Shapley-Folkman Lemma (Lemma 10.3), there is a subset

of the consumers S, of size at least I −L, such that b i ∈ Bi for i ∈ S. For i 6∈ S, we claim that

b i ≥−m/L. This clearly holds if b i = 0. Otherwise, b i is the convex hull of points of the form

x′
i
− e i ≥ x′

i
−m/L ≥−m/L, and thus again b i ≥−m/L.

Recalling that there are at most L many indices i not in S,
∑

i 6∈S b i ≥−m. Thus

b+m= m+
∑

i

b i = m+
∑

i∈S

b i +
∑

i 6∈S

b i ≥ m+
∑

i∈S

b i −m=
∑

i∈S

b i.

By Lemma 13.2,
∑

i∈S b i = 0 if it is in RL
−, and so we have proved the claim.

We now apply the separating hyperplane theorem, which guarantees the existence of a

p 6= 0 ∈ RL such that p · z ≤ 0 for z ∈ RL
−, and p · z ≥ 0 for z ∈ Conv(B+m). From the former

condition it follows that p ≥ 0, and so, by rescaling, we can assume that p ∈ ∆L. It thus

follows from the latter condition that for each b ∈B

p ·b ≥−p ·m=−M.

Let B̄i denote the closure of Bi, and note that xi − e i ∈ B̄i, since by the monotonicity of

the preferences xi + (ε, . . . ,ε)≻i xi. Let B̄ =
∑

i B̄i. Clearly, p · z ≥ 0 for z ∈Conv(B̄+m), and in

particular

p ·b ≥−M

for every b ∈ B̄.

Denote by S the set of consumers that underspend, i.e., those i for which p · (xi − e i) < 0.

Then
∑

i∈S xi − e i ∈ B̄ (as 0 is in each Bi), and so

∑

i∈S

p · (xi − e i)≥−M.

I.e., the total amount underspent by those who underspend is at most M. Recalling that (xi)i

is an allocation,
∑

i xi−e i = 0, and so on average consumers do not overspend:
∑

i p ·(xi−e i)=

0. Thus the total amount overspent by those who overspend is at most M:

∑

i

max{p · (xi − e i),0}≤ M.

Dividing both sides by I yields η≤
M
I

.

It remains to be shown that ζ≤ M
I

. Let T be the set of consumers for whom supx′
i
≻i xi

p ·

(e i − x′
i
)≥ 0. Note that

ζ=
1

I

∑

i

sup
x′

i
≻i xi

max
{

p · (e i − x′i),0
}

=
1

I

∑

i∈T

sup
x′

i
≻i xi

p · (e i − x′i).
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Since p ·b ≥−M for every b ∈B, we have that if x′
i
≻i xi for each i ∈ T, then

1

I
p ·

∑

i∈T

(x′i − e i)≥−
M

I
,

and

1

I

∑

i∈T

p · (e i − x′i)≤
M

I
.

Hence

ζ=
1

I

∑

i∈T

sup
x′

i
≻i xi

p · (e i − x′i)≤
M

I
.
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14 Partial equilibrium: consumers

Consider an private ownership economy with two commodities: commodity 1 and 2, where 2

shall be referred to as “money”, or the “numeraire”. We will denote a consumption bundle of

agent i by a pair (xi, mi), where xi is the consumption of good 1 and mi is the consumption

of money. We assume that agents have quasilinear utilities, so that the preference of agent

i is represented by

u i(xi, mi)= u i(xi)+mi,

and furthermore that u i(xi) ∈C2 is strictly concave and strictly increasing, and that u i(0)=

0. We can think here of u i(xi) as the utility for consuming xi of commodity 1, measured

in units of money. And we can think of commodity 2 as capturing in it the consumption of

everything that is not commodity 1. This is a useful approach, since we often do not want to

(or cannot) model the entire economy, but only a part of it.

The consumption set is X i =R+×R, so that commodity 1 can only be consumed in positive

amounts, but money can be consumed in both negative or positive amounts. The latter is an

important assumption. We normalize the price of money to 1, so that prices can be specified

by a single number p ∈R, the price of the first commodity.

Consider the consumer’s problem. Given price p and wealth wi, she will choose to con-

sume (x∗
i
, m∗

i
) if the numbers maximize u i(x

∗
i
)+m∗

i
subject to the constraint px∗

i
+mi ≤ wi.

We solve this problem in two steps. First given a choice of x∗
i
, the unique optimal choice of

m∗
i

is clearly m∗
i
= wi − p · x∗

i
. Hence

x∗i ∈ argmax
x

u i(xi)+wi − p · xi .

The solution to this problem is independent of wi. Indeed, an important property of quasi-

linear utilities is that they are invariant to changes is wealth. Thus

x∗i ∈ argmax
x

u i(xi)− p · xi .

We can thus write x∗
i
(p,wi)= x∗

i
(p). The demand for money is

m∗
i (p,wi)= wi − p · x∗i (p).

By our assumption that u i is strictly increasing and in C2, if x∗
i
= 0 then u′

i
(x∗

i
)≤ p, and

the same holds with equality if if x∗
i
> 0. In this case we have that u′

i
(x∗

i
(p)) = p. I.e., x∗

i
(p)

is the inverse of the u′
i

since u i is strictly concave, there is a unique solution. Thus, unless

prices are too high and the agent prefers not to consume at all, the demand for commodity

1 is chosen so that the marginal utility of the commodity matches the price.

The indirect utility of consumer i for price p and wealth wi is

vi(p,wi)= u i(x
∗
i (p))+m∗

i (p,wi)

= u i(x
∗
i (p))+wi − p · x∗i (p)

= wi +u i(x
∗
i (p))− p · x∗i (p)

27



The term

CS i(p)= u i(x
∗
i (p))− p · x∗i (p)

is called the consumer surplus.

For p such that x∗
i
(p)> 0, we know that x∗

i
(p) is the inverse of u′

i
(xi). Hence, and because

u′
i

is bounded, for p large enough x∗
i
(p) = 0. Denote p̄ ∈ R∪ {∞} the lowest p such that

x∗
i
(p)= 0.

Recall that if F ∈C2 is strictly increasing and f is its derivative, then

∫b

1
f −1(y)dy= [yf −1(y)−F( f −1(y))]b

a.

Thus

∫p̄

p
x∗i (q)dq = [qx∗i (q)−u i(x

∗
i (q))]

p̄
p = u i(x

∗
i (p))− px∗i (p)= CS i(p).

In case p̄ =∞ to show that the second equality holds we need to show that limq→∞ qx∗
i
(q)= 0.

This is left as an exercise.

Note also that

CS i =

∫x∗
i
(p)

0
[u′

i(x)− p]dx.

The integrand u′
i
(x)− p is the marginal benefit to the consumer for consuming at level x,

where she gains marginal utility u′
i
(p) and pays marginal cost p. This integrand is positive

at all x< x∗
i
(p) since u′

i
(x)< p in that region.

Let x∗(p) =
∑

i x∗
i
(p). If we let u′ be the inverse of x, and u the integral of u′, then u is a

utility function that induces demand x∗(p). We thus always have a representative consumer.

A simple calculation shows that the consumer surplus for this representative consumer is

equal to the sums of the surpluses of the individual consumers.
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15 Partial equilibrium: production

Suppose that it costs ci(y) for producer i to produce y units of commodity 1. This corresponds

to a firm whose production set is Y = {(y,−m) : y ∈ R+, m ∈ R+, m ≥ ci(y)}. We will assume

that ci : R+ →R+ is in C2, strictly increasing and strictly convex. Note that (strict) convexity

of Y corresponds to (strict) convexity of c.

At price p, firm i will choose to produce y∗
i
(p) units of commodity 1, which will cost it

−ci(y) money. The firm’s problem is hence solved by

y∗i (p) ∈ argmax
y∈Y

p · y− ci(y)

If y∗
i
= 0 then c′(y∗) ≥ p. If y∗

i
> 0 then it must be that c′

i
(y∗(p)) = p, and thus y∗

i
(p) is the

inverse of c′
i
(y).

We can let Y =
∑

i Yi and y∗(p) =
∑

i y∗
i
(p). By our assumptions, y∗(p) is strictly increas-

ing. Let c(y) = min{m : (y,−m) ∈ Y }. The set Y is strictly convex, since it is the sum of

strictly convex sets. Hence c(y) is strictly convex.
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16 Partial equilibrium conditions

We will assume that consumers are endowed with money only. We will consider equilibria

in which xi > 0 for all i. Thus, an allocation ((xi, mi)i, (yi)i) and a price vector p such that

xi > 0 are an equilibrium if u′
i
(xi)= p, c′

i
(yi)= p,

∑

i xi =
∑

i yi and
∑

i mi =
∑

i e i. Note that it

must be that p > 0, since otherwise the consumers will consume an infinite amount.

The next claim shows that we can dispense with the last condition.

Claim 16.1. In a general private ownership economy with LNS preferences, an allocation

((xi)i, (yi)i) and a price vector p with pL 6= 0 are an equilibrium if xi ∈ X∗
i
(p,wi), yj ∈ Y ∗

j
(p),

and
∑

i xi,ℓ =
∑

j yj,ℓ for ℓ ∈ {1, . . .,L−1}.

Proof. Since preferences are LNS, by Lemma 2.1 p · xi = wi. Summing over i yields

p ·
∑

i

xi −wi = 0.

Writing this expression commodity by commodity and separating the last commodity yields

pL ·
∑

i

(xi,L −wi,L)=−
∑

ℓ 6=L

pℓ ·
∑

i

(xi,ℓ−wi,ℓ).

Substituting wi =
∑

j θi j p · yj yields

pL ·
∑

i

(

xi,L −
∑

j

θi j p · yj,L

)

=−
∑

ℓ 6=L

pℓ ·
∑

i

(

xi,ℓ−
∑

j

θi j p · yj,ℓ

)

.

Changing the order of summation and using
∑

i θi j = 1 we get

pL ·

(

∑

i

xi,L −
∑

j

yj,L

)

=−
∑

ℓ 6=L

pℓ ·

(

∑

i

xi,ℓ−
∑

j

yj,ℓ

)

= 0,

and so, since pL 6= 0,

∑

i

xi,L −
∑

j

yj,L = 0,

and all the equilibrium conditions are satisfied.

We now turn to a comparative statics example, which is taken from [1]. Suppose that

a sales tax is imposed, and consumers have to pay t > 0 money for each unit of commodity

1 that they consume. We thus have a family of economies indexed by t, where production

costs and endowments are not dependent on t, but consumer preferences are represented by

u i(x, m)= u i(x)− tx+m.

Following the analysis above, in equilibrium,

u′
i(xi)= p+ t and c′i(yi)= p. (16.1)
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How do equilibrium prices, consumption and production change when we change the

tax? Denote x =
∑

i xi and y =
∑

j yj the total consumption and production in equilibrium,

and by u and c the corresponding aggregate utility and cost functions. We assume both are

differentiable. Since consumption depends only on the price and tax, we denote by x(p, t)

consumer demand given price p and tax t. By (16.1) x depends on p and t only through p+ t,

and thus we can write x as a function of a single variable x(p+ t)= x(p, t).

Production does not depend on taxation, and so we denote by y(p) production at price

p. We denote by p(t) the equilibrium price when taxes are set to t. In equilibrium we know

that

x(p(t)+ t)= y(p(t)).

Differentiating this equation with respect to t yields

(p′(t)+1)x′(p(t)+ t)= p′(t)y′(p(t)),

Rearranging, we get

−p′(t)=
−x′(p(t)+ t)

y′(p(t))− x′(p(t)+ t)
.

We know that x′ is negative and y′ is positive. It thus follows that 0 ≤ −p′(t) ≤ 1. That is,

when we increase taxes by a cent, prices will decrease by something that is between 0 and

a cent. Since consumers also pay the tax, their effective price p(t)+ t increases.

When y′(p(t)) is very big as compared to −x′(p(t)+ t), −p′(t) will be very close to 0, so

that prices change very little in response to taxation. The effective price for consumers will,

however, increase almost linearly with the taxation. When y′(p(t)) is very small, −p′(t) will

be almost 1. In this case the effective price to consumers will not change by much. These

two cases are referred to as high pass-through and low pass-through, respectively.
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17 Uncertainty

In this section we explore how our setting of a private ownership economy can incorporate

uncertainty. We will consider Lp physical commodities, and S states of nature. The set of

commodities will have size L = Lp ×S. Commodities will be denoted as a pair (ℓ, s). The

interpretation is that exactly one of the states realizes, and what is traded is a physical com-

modity whose delivery is contingent on that state. Thus, if consumer i consumes an amount

xi,(ℓ,s) of commodity (ℓ, s), that is taken to mean that contingent on the state realization

s, she will get that amount of the physical commodity ℓ. Our notion of an equilibrium is

unchanged, so that consumers have preferences over bundles of commodities, and an equi-

librium consists of an allocation that clears the market, firms that maximize profit, and

agents who consume an optimal bundle given their budget. In this setting an equilibrium is

called an Arrow-Debreu equilibrium.

As an example, consider an exchange economy with two agents, a single physical com-

modity and two states. Let the preference of consumer i be given by

u i(xi,s1
, xi,s2

)=πivi(xi,s1
)+ (1−πi)vi(xi,s2

),

for some strictly concave, differentiable vi : R→ R and πi ∈ [0,1]. An interpretation of this

preference is that the consumer is an expected utility maximizer, and has prior belief πi that

the state is s1, and utility vi for the physical good. Suppose that e1 = (1,0) and e2 = (0,1).

Thus, in state s1 consumer 1 is endowed with one unit of the physical product, and in state

s2 consumer 2 is endowed with one unit of the physical product.

Suppose (x1, x2) and p form an interior equilibrium. Then

p1

p2

=
π1v′1(x1,s1

)

(1−π1)v′
1
(x1,s2

)
=

π2v′2(x2,s1
)

(1−π2)v′
1
(x2,s2

)
=

π2v′2(1− x1,s1
)

(1−π2)v′
2
(1− x1,s2

)
.

If π1 =π2 =π then this implies that

v′1(x1,s1
)v′2(1− x1,s2

)= v′2(1− x1,s1
)v′1(x1,s2

),

which is possible only if x1,s1
= x1,s2

, and hence also x2,s1
= x2,s2

, by the strict concavity of v1

and v2. In this case, consumers demand the same amount of physical good in both states,

and thus face no risk. Prices reflect beliefs: p1/p2 = π/(1−π). In the general case, if π1 > π2

then x1,s1
> x1,s2

and x2,s1
< x2,s2

.
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18 Pari-mutuel gambling

Consider a horse race, in which I gamblers each place bets on one of L horses. Each gambler

has a budget mi > 0 which they completely spend. We denote
∑

i mi = M.

We will consider two equivalent ways of thinking about these markets. In the first, each

gambler i decides how much money mi,ℓ to bet on horse ℓ. After the race, if horse ℓ wins, all

the money collected is distributed between those who bet on ℓ, in proportion to the amount

they bet. So that gambler i receives

mi,ℓ
∑

h mh,ℓ

M.

An equivalent description is one in which, for each horse ℓ, each gambler may buy any

amount of tickets for that horse, for some price pℓ. We denote the number of tickets bought

by gambler i for horse ℓ by xi,ℓ, so that the amount spent on these tickets is mi,ℓ = pℓxi,ℓ.

After the race, given that horse ℓ won, each ticket sold for horse ℓ is worth a unit of

money, and the rest are worthless. Thus, when horse ℓ wins, gambler i’s payoff is equal

to xi,ℓ. The market clearing condition is that the total amount of winnings distributed is

always equal to the total amount of money collected. I.e., for any horse ℓ,
∑

i xi,ℓ = M. Since

xi,ℓ = mi,ℓ/pℓ, it follows that

∑

i

mi,ℓ/pℓ = M,

or

pℓ =

∑

i mi,ℓ

M
.

That is, pℓ is the fraction of money gambled on horse ℓ, of all the money gambled by all the

gamblers.

We assume that the gamblers each have a prior πi,ℓ that horse ℓ will win the race. They

are risk neutral, and so aim to maximize their expected return, which for i is equal to

u i(xi)=
∑

ℓ

πi,ℓxi,ℓ. (18.1)

Thus, in equilibrium, gambler i will maximize u i(xi) subject to the constraint
∑

ℓ pℓxi,ℓ = mi.

That is, she will gamble a positive amount on horse ℓ only if

ℓ ∈ argmax
k

πi,k

pk

A pari-mutuel equilibrium for priors (πi,ℓ)i,ℓ and budgets (mi)i is a gambles profile

(xi,ℓ)i,ℓ and a price vector p such that

1. For all i it holds that xi maximizes u i(x)=
∑

ℓπi,ℓxi,ℓ subject to
∑

ℓ pℓxi,ℓ = mi.

2.
∑

i xi,ℓ = M for every ℓ.
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This setting is equivalent to an exchange economy in which there is a single physical

commodity (money) and L states (which horse won). Each consumer i is endowed with

e i = (mi, mi, . . . , mi): a sure amount of money. Their preference is given by (18.1).

Theorem 18.1 (Eisenberg & Gale). Suppose that for each ℓ there is an i such that πi,ℓ > 0.

Then there exist (xi,ℓ)i,ℓ and p ≫ 0 that form an equilibrium.

Note that the condition that πi,ℓ > 0 for some i is almost without loss of generality, for

if this does not hold then we can remove horse ℓ from the race and proceed with the rest.

Before proving this theorem we will introduce Cobb-Douglas preferences. Consider a single

consumer whose preferences over L goods is represented by the utility function

u(x1, . . . , xL)=
L
∏

ℓ=1

x
mℓ

ℓ
.

for some positive exponents m1, . . . , mL. We denote M =
∑

ℓ Mℓ. Given a price vector p ∈ RL

and total wealth w, the demand x∗ will maximize u subject to
∑

ℓ pℓx∗
ℓ
≤ w. Equivalently, we

can maximize log u under this constraint. Adding a Lagrange multiplier λ for the constraint

we get that x∗,λ maximize

∑

ℓ

mℓ log xℓ−λ(
∑

ℓ

pℓxℓ−w).

The first order conditions give

mℓ

xℓ
=λpℓ,

which we rearrange to

pℓxℓ =
mℓ

λ
,

To meet the budget constraint we must have that λ= w/M, and the solution is hence

pℓxℓ =
w

M
mℓ.

An important observation is that the total amount of money spent on good ℓ is propor-

tional to the exponent mℓ, regardless of the budget. This makes these preferences easy to

work with, and, as we shall see now, makes them useful for other reasons.

To prove Theorem 18.1 we will consider the social welfare function

U(x)=
∏

i

u i(xi)
mi .

Denote

Φ(x)= logU(x)=
∑

i

mi log u i(xi)=
∑

i

mi log

(

∑

ℓ

πi,ℓxi,ℓ

)

.
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Note that

∂Φ

∂xi,ℓ

(x)=
miπi,ℓ

∑

ℓπi,ℓ · xi,ℓ

=
miπi,ℓ

u i(xi)
.

Consider the problem of maximizing U (or equivalently Φ) subject to the market clearing

constraints
∑

i xi,ℓ = M and the feasibility constraints xi,ℓ ≥ 0. Clearly an optimum x exists,

since U is continuous on the constrained, compact domain. In this optimum u i(xi) > 0 for

all i, since otherwise U(x)= 0, and U takes values higher than zero, for example by having

each agent gamble equal amounts on each horse.

If we denote by pℓ the Lagrange multiplier for the market clearing constraint
∑

i xi,ℓ = M,

we get that x is a maximizer if and only if it satisfies the conditions of the KKT Theorem:
∂Φ
∂xi,ℓ

(x)= pℓ whenever xi,ℓ > 0, in which case

pℓ =
miπi,ℓ

u i(xi)
, (18.2)

and

pℓ ≥
miπi,ℓ

u i(xi)
. (18.3)

when xi,ℓ = 0. Note that pℓ > 0, since by assumption πi,ℓ > 0 for some i.

Multiplying both sides of (18.2) by xi,ℓ we get

pℓxi,ℓ =
miπi,ℓxi,ℓ

u i(xi)
,

which holds for all ℓ: when xi,ℓ > 0 it holds by (18.2), and when xi,ℓ = 0 both sides vanish.

Summing over ℓ we get

∑

ℓ

pℓxi,ℓ =
∑

ℓ

miπi,ℓxi,ℓ

u i(xi)
= mi

∑

ℓπi,ℓxi,ℓ

u i(xi)
= mi,

since (18.2) is satisfied whenever xi,ℓ 6= 0. So miraculously the budget constraint is satisfied.

This is in fact due to the clever choice of Φ as taking a Cobb-Douglas form. If xi,ℓ = 0 then

by (18.3)

πi,ℓ

pℓ

≤
u i(x)

mi

,

and this holds with equality if xi,ℓ > 0. Thus πi,ℓ/pℓ is maximal for every ℓ for which xi,ℓ > 0,

the choice of xi is optimal, and (xi,ℓ)i,ℓ and p form an equilibrium. This completes the proof

of Theorem 18.1.

While in general there is not a unique equilibrium, the prices in every equilibrium are

unique. We now prove this. Suppose (x′
i,ℓ

)i,ℓ and p′ form an equilibrium, as do (x′
i,ℓ

)i,ℓ and

p′.
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Let

µi =max
ℓ

πi,ℓ

pℓ

µ′
i =max

ℓ

πi,ℓ

p′
ℓ

.

It follows that

πi,ℓ ≤µi pℓ

πi,ℓ ≤µ′
i p

′
ℓ. (18.4)

Under x, the expected revenue for gambler’s i investment into horse ℓ is xi,ℓπi,ℓ. By

the definition of µ, xi,ℓµi pℓ = xi,ℓπi,ℓ (when µi 6= πi,ℓ/pℓ both vanish, because xi,ℓ vanishes).

Thus by (18.4)

xi,ℓµi pℓ ≤ xi,ℓµ
′
i p

′
ℓ,

and by a symmetric argument

x′i,kµ
′
i p

′
k ≤ x′i,kµi pk.

Multiplying the inequalities by x′
i,k

/pℓ and xi,ℓ/p′
k

respectively, we arrive at

x′i,kxi,ℓµi ≤ x′i,kxi,ℓµ
′
i

p′
ℓ

pℓ

x′i,k xi,ℓµ
′
i

p′
k

pk

≤ x′i,kxi,ℓµi.

Combining into one inequality yields

x′i,k xi,ℓµ
′
i

p′
k

pk

≤ x′i,kxi,ℓµ
′
i

p′
ℓ

pℓ

.

We now multiply by p′
k

pℓ, divide by µ′
i

and sum over k,ℓ:

∑

k,ℓ

(p′
kx′i,k)(pℓxi,ℓ)

p′
k

pk

≤
∑

k,ℓ

(p′
kx′i,k)(pℓxi,ℓ)

p′
ℓ

pℓ

.

Since
∑

ℓ pℓxi,ℓ = mi =
∑

l p′
k
x′

i,k
we get

∑

k

(p′
kx′i,k)

p′
k

pk

≤
∑

ℓ

(pℓxi,ℓ)
p′
ℓ

pℓ

.

Summing over i and dividing by M yields

∑

k

p′
k

p′
k

pk

≤
∑

ℓ

pℓ

p′
ℓ

pℓ

= 1.
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Equivalently

∑

k

(

p′
k

pk

)2

pk ≤ 1,

i.e., the second moment (according to p) of p′
k
/pk is at most 1. The expectation of p′

k
/pk

is
∑

k(p′
k
/pk)pk = 1. Since the variance of any random variable is non-negative (i.e., the

second moment minus the expectation squared is non-negative) it follows that p′
k
/pk has

zero variance, and thus must equal 1 for every k. Thus p′
k
= pk.
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19 Radner equilibria

Consider an exchange economy with Lp physical goods and S states. In an Arrow-Debreu

equilibrium there are prices for each of the L = S ·Lp contingent goods. We think of trade

as occurring before the state has been realized, and of consumption as occurring after the

state has been realized. The equilibrium conditions are

(i) xi maximizes ºi subject to
∑

s,ℓ ps,ℓxi,s,ℓ ≤
∑

s,ℓ ps,ℓe i,s,ℓ.

(ii)
∑

i xi,s,ℓ =
∑

i e i,s,ℓ for each commodity (s,ℓ).

One could imagine that trade occurs only after the state is realized, so that the budget

constraint (i) needs to hold in each state separately. This would correspond to replacing (i)

by

(i’) xi maximizes ºi subject to
∑

ℓ ps,ℓxi,s,ℓ ≤
∑

ℓ ps,ℓe i,s,ℓ for each state s.

Here, for each state s we think of each price vector ps,· ∈ R
L p as the vector of spot prices

for a market that opens once state s is realized. Note that if xi satisfies (i) and (ii) then it

is Pareto optimal, by the first welfare theorem. Hence there is, in a sense, no reason for

further trades after the state has been revealed when all contingent goods are traded before

the state is revealed. But if instead it satisfies (i’) and (ii) then it may not be Pareto optimal.

For example, in a market described in §17 (a single physical good, two states, e1 = (1,0)

and e2 = (0,1), and expected utility maximizing consumers) it is no longer possible for the

consumers to insure each other, and each must consume only in one of the states, since she

has zero wealth in the other.

As we now explain, we can still achieve Pareto optimality while trading after the state is

revealed, by allowing trade in just one physical good (which we can think of as money, even

though we will not assume quasi-linear utilities) before the state is realized.

In a Radner equilibrium we consider an exchange economy with Lp physical goods and

S states. We will assume that X i =R
L
+ and preferences are strictly monotone, and

∑

i e i ≫ 0.

We imagine that trade takes place in two stages.

In t = 0 the consumers trade contingent quantities of good 1 only, at some contingent

price vector q ∈ RS. We denote by zi,s the amount of good 1 at state s that consumer i buys.

Thus consumer i spends
∑

s qszi,s at t = 0. As none of the endowment is consumed at this

stage, the consumers all have a budget of zero for this trade, and so
∑

s qszi,s ≤ 0. The market

clearing condition is
∑

s zi,s = 0.

In t = 1 the state is realized, and a spot market opens at the realized state s. The wealth

of consumer i includes the value of her endowment, plus the value of the contingent goods

purchased before:
∑

ℓ ps,ℓe i,ℓ+ ps,1zi,s.

Thus, (zi,s)i,s, (xi,s,ℓ)i,s,ℓ, (ps,ℓ)s,ℓ and (qs)s, form a Radner equilibrium if

(i) xi and zi maximize ºi subject to
∑

s qszi,s ≤ 0 and
∑

ℓ ps,ℓxi,s,ℓ ≤
∑

ℓ ps,ℓe i,s,ℓ+ ps,1zi,s

for each state s.

(ii)
∑

i zi,s = 0 for each state s.

38



(iii)
∑

i xi,s,ℓ =
∑

i e i,s,ℓ for each commodity (s,ℓ).

Note that when trading at t = 0, consumers are (correctly) anticipating the prices at t = 1,

basing their choice of zi on them. The next claim shows that we can assume without loss of

generality that qs = ps,1, so that the price of good 1 does not change from t = 0 to t = 1.

Claim 19.1. Suppose (zi,s)i,s, (xi,s,ℓ)i,s,ℓ, (ps,ℓ)s,ℓ and (qs)s form a Radner equilibrium, with

ps,1 > 0. Let p′
s,ℓ

=
qs

ps,1
ps,ℓ (so that qs = p′

s,1
). Then (zi,s)i,s, (xi,s,ℓ)i,s,ℓ, (p′

s,ℓ
)s,ℓ and (qs)s form

a Radner equilibrium.

Proof. It suffices to check that xi and zi maximize ºi subject to
∑

ℓ p′
s,ℓ

(xi,s,ℓ−e i,s,ℓ)≤ p′
s,1z′

i,s

and
∑

s qszi,s ≤ 0 for each state s for each state s.

This indeed holds, since the condition

∑

ℓ

p′
s,ℓ(xi,s,ℓ− e i,s,ℓ)≤ p′

s,1zi,s

is equivalent to

∑

ℓ

qs

ps,1

ps,ℓ(xi,s,ℓ− e i,s,ℓ)≤
qs

ps,1

ps,1zi,s,

which is equivalent to

∑

ℓ

ps,ℓ(xi,s,ℓ− e i,s,ℓ)≤ ps,1zi,s.

Note that since
∑

i e i ≫ 0, since preferences are strictly monotone, prices must be posi-

tive, since otherwise maximal demands would not exist. We will therefore describe Radner

equilibria by just specifying z, x and p, with the implied assumption that qs = ps,1.

Proposition 19.2. 1. Suppose (zi,s)i,s, (xi,s,ℓ)i,s,ℓ and (ps,ℓ)s,ℓ form a Radner equilibrium.

Then (xi,s,ℓ)i,s,ℓ and (ps,ℓ)s,ℓ form an Arrow-Debreu equilibrium.

2. Suppose (xi,s,ℓ)i,s,ℓ, and (ps,ℓ)s,ℓ form an Arrow-Debreu equilibrium. Then there are

(zi,s)i,s such that (zi,s)i,s, (xi,s,ℓ)i,s,ℓ and (ps,ℓ)s,ℓ form a Radner equilibrium.

Proof. In the Arrow-Debreu setting, consumer i chooses xi as a maximal element from

A i =

{

(xi,s,ℓ)s,ℓ :
∑

s,ℓ

ps,ℓ(xi,s,ℓ− e i,s,ℓ)≤ 0

}

We can reformulate the consumer’s problem in the the Radner setting to maximize xi over

the set

R i =

{

(xi,s,ℓ)s,ℓ : ∃(zi,s)s s.t.
∑

s

ps,1zi,s ≤ 0 and
∑

ℓ

ps,ℓ(xi,s,ℓ− e i,s,ℓ)≤ ps,1zi,s for all s

}
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We show that A i = R i. Fix xi ∈ A i. Let

zi,s =
1

ps,1

∑

ℓ

ps,ℓ(xi,s,ℓ− e i,s,ℓ). (19.1)

Then it is immediate that
∑

s ps,1zi,s ≤ 0 and
∑

ℓ ps,ℓ(xi,s,ℓ− e i,s,ℓ) ≤ ps,1zi,s (the latter with

equality), and so xi ∈ R i.

Conversely, fix xi ∈ R i. Then summing the second inequality in the definition of R i over

s yields

∑

s,ℓ

ps,ℓ(xi,s,ℓ− e i,s,ℓ)≤
∑

s

ps,1zi,s,

which is at most 0 by the first inequality in the definition of R i. Thus xi ∈ A i.

1. Since R i = A i, xi is a maximal element of A i. Since it is also an allocation, we have an

Arrow-Debreu equilibrium.

2. Since R i = A i, xi is a maximal element of R i, and furthermore, as the proof above

shows, if we choose zi by (19.1), xi and zi will solve the consumer’s problem. Since xi

is an allocation, it remains to be shown that
∑

i zi,s = 0 for all s. By our choice of zi,s,

∑

i

zi,s =
∑

i

1

ps,1

∑

ℓ

ps,ℓ(xi,s,ℓ− e i,s,ℓ)=
1

ps,1

∑

ℓ

ps,ℓ

∑

i

(xi,s,ℓ− e i,s,ℓ)

Since (xi,s,ℓ)i is an allocation,
∑

i(xi,s,ℓ− e i,s,ℓ)= 0, and so
∑

i zi,s = 0.
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20 Asset pricing

We will now consider an economy with a single physical commodity (potatoes) and a finite

set of S states. Consumers have strictly monotone preferences over the S contingent com-

modities. Each consumer is endowed with some e ∈ RS
+. An asset a ∈ RS is a contract that

delivers as potatoes in state s. We will think of assets as column vectors.

Some examples of assets include the risk free asset as = 1. Another is the for state s′,

given by as = 1s=s′. Given an asset a, an asset b is a call option for a with strike price p if

bs = (as − p)+. The asset c is a put option with strike price p if cs = (p−as)
+.

A market will consist of J assets a1, . . . ,aJ , and an asset price vector q ∈ RJ
+, which we

will think of as also quoted in potatoes. We will denote by A the matrix whose columns are

the a j ’s, so that As, j = a
j
s. A portfolio for A is z ∈ RJ . The price of a portfolio z is q · z. It

generates the cash (or potato) flow Az: in state s, portfolio z delivers
∑

j As, jz j potatoes.

Given a market with assets A and prices q, a consumer with endowment e will choose a

portfolio z ∈RJ to maximize her consumption x = e+ Az, subject to q · z ≤ 0.

We say that a portfolio z is an arbitrage opportunity if q·z ≤ 0 and Az ≥ 0, Az 6= 0. Clearly,

if there are arbitrage opportunities in the market then there is no solution to the consumer’s

problem, and any notion of equilibrium is precluded.

Theorem 20.1. Suppose that As, j ≥ 0, and that for all j there is an s such that As, j > 0. Then

the following are equivalent:

(i) There are no arbitrage opportunities.

(ii) There is a µ≫ 0 ∈RS such that µA = q.

Proof. Assume (i). We note first that q ≫ 0, since if q j ≤ 0 then z with z j = 1, zk = 0 for k 6= j

is an arbitrage opportunity. Consider the set

V = {Az ∈RS : q · z ≤ 0}.

This convex subset of RS consists of all flows that can be achieved with a balanced budget

portfolio, and thus V ∩RS
+ = {0}. Hence, of we denote ∆S = {x ∈ RS

+ :
∑

s xs = 1}, then V ∩∆S

is empty. Since ∆S is compact, by the separating hyperplane theorem there is a µ 6= 0 such

that µ · x > 0 for all x ∈∆S and µ · v ≤ 0 for all v ∈ V . By the first property of µ we have that

µ≫ 0. The second property implies that µ · v = 0 for all v ∈ V0 = {Az ∈ RS : q · z = 0}, since

V0 ⊆V is a vector space. We thus have that µAz = 0 whenever q · z = 0. So µA is orthogonal

to every vector in the space of vectors orthogonal to q, and hence must be equal to q, up to

some constant λ. Since µ≫ 0 and by our assumptions on A, µA ≫ 0. Since q ∈ RS
+, λ must

be positive, and, by rescaling µ, we have that q =µA.

Now suppose that (i) does not hold, so that that there is a portfolio z with q · z ≤ 0 and

Az ∈∆S. Then for any µ≫ 0 it holds that µA ≫ 0, and so

µAz = (µA) · z > 0.
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An implication of this result is that when there are no arbitrage opportunities, the price

q j of asset a j is

q j =µ ·a j
=

∑

s

µsa
j
s.

So the price of every asset is a weighted average of what it delivers in the different states.

As we note in the proof of the theorem, under the positivity assumptions on A, q is posi-

tive. Since the consumers’ problem is unchanged when q is multiplied by a constant, we

can assume that µ is in ∆S. So we can interpret it as a probability measure on the set of

states, and hence each asset costs the expectation of what it delivers in the different states,

according to this distribution.

We say that A is complete if it has rank S.

Theorem 20.2. Suppose that As, j ≥ 0, that for all j there is an s such that As, j > 0. Then the

following are equivalent:

(i) The market is complete.

(ii) There is a unique µ∈RS such that µA = q.

Proof. Suppose that the market is complete, so that A has full rank. Then νA = 0 implies

ν= 0. It follows that if µA = q and µ′A = q then (µ−µ′)A = 0, and thus µ=µ′. Conversely, if

A does not have full rank, then there is some ν 6= 0 such that νA = 0. Hence if µA = q then

also (µ+ν)A = q, and µ is not unique.
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