Maxima and minima: II
Based on lecture notes by James McKernan

To see how to maximize and minimize a function on the boundary, let’s consider a concrete example.

Let
\[K = \{ (x, y) \mid x^2 + y^2 \leq 2 \} \]

Then \(K \) is compact. Let
\[f : K \to \mathbb{R} \]
be the function \(f(x, y) = xy \). Then \(f \) is continuous and so \(f \) achieves its maximum and minimum.

I. Let’s first consider the interior points. Then
\[\nabla f(x, y) = (y, x) \]
so that \((0, 0)\) is the only critical point. The Hessian of \(f \) is
\[Hf(x, y) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} . \]

\(d_1 = 0 \) and \(d_2 = -1 \neq 0 \) so that \((0, 0)\) is a saddle point.

It follows that the maxima and minima of \(f \) are on the boundary, that is, the set of points
\[C = \{ (x, y) \mid x^2 + y^2 = 2 \} . \]

II. Let \(g : \mathbb{R}^2 \to \mathbb{R} \) be the function \(g(x, y) = x^2 + y^2 \). Then the circle \(C \) is a level curve of \(g \). The original problem asks to maximize and minimize
\[f(x, y) = xy \quad \text{subject to} \quad g(x, y) = x^2 + y^2 = 2 . \]

One way to proceed is to use the second equation to eliminate a variable. The method of Lagrange multipliers does exactly the opposite. Instead of eliminating a variable we add one more variable, traditionally called \(\lambda \).

In general, say we want to maximize \(f(x, y) \) subject to \(g(x, y) = c \). Then at a maximum point \(p \) it won’t necessarily be the case that \(\nabla f(p) = 0 \), but it will be the case that the directional derivative \(\nabla f(p) \cdot \hat{n} \) will be zero for any \(\hat{n} \) that is in the direction of the level set \(g(x, y) = c \). Since \(\nabla g \) is orthogonal to this level set, at a maximum point \(p \) it will be the case that \(\nabla f(p) \) and \(\nabla g(p) \) will be at the same direction, or that \(\nabla f(p) = \lambda \nabla g(p) \) for some \(\lambda \).

Consider the function
\[h(x, y, \lambda) = f(x, y) - \lambda(g(x, y) - c) . \]

Let’s see what happens at points where \(\nabla h = 0 \). Taking the derivatives with respect to \(x \) and \(y \) and equating to zero yields
\[\nabla f(x, y) - \lambda \nabla g(x, y) = 0 , \]
which is what we’re looking for. Taking the derivative with respect to \(\lambda \) and equating to zero yields
\[g(x, y) = c , \]
which is the second condition we need. Hence finding a point in which \(\nabla h = 0 \) is the same as solving our problem.

So now let’s maximize and minimize
\[h(x, y, \lambda) = f(x, y) - \lambda(g(x, y) - 2) = xy - \lambda(x^2 + y^2 - 2) . \]
We find the critical points of $h(x, y, \lambda)$:

\[
\begin{align*}
y &= 2 \lambda x \\
x &= 2 \lambda y \\
2 &= x^2 + y^2.
\end{align*}
\]

First note that if $x = 0$ then $y = 0$ and $x^2 + y^2 = 0 \neq 2$, impossible. So $x \neq 0$. Similarly one can check that $y \neq 0$ and $\lambda \neq 0$. Divide the first equation by the second:

\[
\frac{y}{x} = \frac{x}{y},
\]

so that $y^2 = x^2$. As $x^2 + y^2 = 2$ it follows that $x^2 = y^2 = 1$. So $x = \pm 1$ and $y = \pm 1$. This gives four potential points $(1, 1), (-1, 1), (1, -1), (-1, -1)$. Then the maximum value of f is 1, and this occurs at the first and the last point. The minimum value of f is -1, and this occurs at the second and the third point.

One can also try to parametrize the boundary:

\[
\vec{r}(t) = \sqrt{2}(\cos t, \sin t).
\]

So we maximize the composition

\[
h : [0, 2\pi] \longrightarrow \mathbb{R},
\]

where $h(t) = 2 \cos t \sin t$. As $I = [0, 2\pi]$ is compact, h has a maximum and minimum on I. When $h'(t) = 0$, we get

\[
\cos^2 t - \sin^2 t = 0.
\]

Note that the LHS is $\cos 2t$, so we want

\[
\cos 2t = 0.
\]

It follows that $2t = \pi/2 + 2m\pi$, so that

\[
t = \pi/4, \quad 3\pi/4, \quad 5\pi/4, \quad \text{and} \quad 7\pi/4.
\]

These give the four points we had before.

What is the closest point to the origin on the surface

\[
F = \{ (x, y, z) \in \mathbb{R}^3 \mid x \geq 0, y \geq 0, z \geq 0, xyz = p \}.
\]

So we want to minimize the distance to the origin on F. The first trick is to minimize the square of the distance. In other words, we are trying to minimize $f(x, y, z) = x^2 + y^2 + z^2$ on the surface

\[
F = \{ (x, y, z) \in \mathbb{R}^3 \mid x \geq 0, y \geq 0, z \geq 0, xyz = p \}.
\]

In words, given three numbers $x \geq y \geq 0$ and $z \geq 0$ whose product is $p > 0$, what is the minimum value of $x^2 + y^2 + z^2$?

Now F is closed but it is not bounded, so it is not even clear that the minimum exists.

Let’s use the method of Lagrange multipliers. Let

\[
h : \mathbb{R}^4 \longrightarrow \mathbb{R},
\]

be the function

\[
h(x, y, z, \lambda) = x^2 + y^2 + z^2 - \lambda(xyz - p).
\]
We look for the critical points of h:

$$
2x = \lambda yz \\
2y = \lambda xz \\
2z = \lambda xy \\
p = xyz.
$$

Once again, it is not possible for any of the variables to be zero. Taking the product of the first three equations, we get

$$8(xyz) = \lambda^3(x^2y^2z^2).$$

So, dividing by xyz and using the last equation, we get

$$8 = \lambda^3 p,$$

that is

$$\lambda = \frac{2}{p^{1/3}}.$$

Taking the product of the first two equations, and dividing by xy, we get

$$4 = \lambda^2 z^2,$$

so that

$$z = p^{1/3}.$$

So $h(x, y, z, \lambda)$ has a critical point at

$$(x, y, z, \lambda) = \left(\frac{p^{1/3}}{3}, \frac{p^{1/3}}{3}, \frac{p^{1/3}}{3}, \frac{2}{p^{1/3}}\right).$$

We check that the point

$$(x, y, z) = \left(\frac{p^{1/3}}{3}, \frac{p^{1/3}}{3}, \frac{p^{1/3}}{3}\right),$$

is a minimum of $x^2 + y^2 + z^2$ subject to the constraint $xyz = p$. At this point the sum of the squares is

$$3p^{2/3}.$$

Suppose that $x \geq 2p^{1/3}$. Then the sum of the squares is at least $4p^{2/3}$. Similarly if $y \geq 2p^{1/3}$ or $z \geq 2p^{1/3}$. On the other hand, the set

$$K = \{ (x, y, z) \in \mathbb{R}^3 \mid x \in [0, 2p^{1/3}], y \in [0, 2p^{1/3}], z \in [0, 2p^{1/3}], xyz = p \},$$

is closed and bounded, so that f achieves it minimum on this set, which we have already decided is at

$$(x, y, z) = \left(\frac{p^{1/3}}{3}, \frac{p^{1/3}}{3}, \frac{p^{1/3}}{3}\right),$$

since f is larger on the boundary. Putting all of this together, the point

$$(x, y, z) = \left(\frac{p^{1/3}}{3}, \frac{p^{1/3}}{3}, \frac{p^{1/3}}{3}\right),$$

is a point where the sum of the squares is a minimum.

Here is another such problem. Find the closest point to the origin which also belongs to the cone

$$x^2 + y^2 = z^2,$$

and to the plane

$$x + y + z = 3.$$
As before, we minimize \(f(x, y, z) = x^2 + y^2 + z^2 \) subject to \(g_1(x, y, z) = x^2 + y^2 - z^2 = 0 \) and \(g_2(x, y, z) = x + y + z = 3 \). Introduce a new function, with two new variables \(\lambda_1 \) and \(\lambda_2 \),

\[
h : \mathbb{R}^5 \rightarrow \mathbb{R},
\]

given by

\[
h(x, y, z, \lambda_1, \lambda_2) = f(x, y, z) - \lambda_1 g_1(x, y, z) - \lambda_2 g_2(x, y, z)
\]

\[
= x^2 + y^2 + z^2 - \lambda_1(x^2 + y^2 - z^2) - \lambda_2(x + y + z - 3).
\]

We find the critical points of \(h \):

\[
2x = 2\lambda_1 x + \lambda_2
\]

\[
2y = 2\lambda_1 y + \lambda_2
\]

\[
2z = -2\lambda_1 z + \lambda_2
\]

\[
z^2 = x^2 + y^2
\]

\[
3 = x + y + z.
\]

Suppose we subtract the first equation from the second:

\[
y - x = \lambda_1(y - x).
\]

So either \(x = y \) or \(\lambda_1 = 1 \). Suppose \(x \neq y \). Then \(\lambda_1 = 1 \) and \(\lambda_2 = 0 \). In this case \(z = -z \), so that \(z = 0 \). But then \(x^2 + y^2 = 0 \) and so \(x = y = 0 \), which is not possible.

It follows that \(x = y \), in which case \(z = \pm\sqrt{2}x \) and

\[
(2 \pm \sqrt{2})x = 3.
\]

So

\[
x = \frac{3}{2 \pm \sqrt{2}} = \frac{3(2 \mp \sqrt{2})}{2}.
\]

This gives us two critical points:

\[
p = \left(\frac{3(2 - \sqrt{2})}{2}, \frac{3(2 - \sqrt{2})}{2}, \frac{3\sqrt{2}(2 - \sqrt{2})}{2} \right)
\]

\[
q = \left(\frac{3(2 + \sqrt{2})}{2}, \frac{3(2 + \sqrt{2})}{2}, -\frac{3\sqrt{2}(2 + \sqrt{2})}{2} \right).
\]

Of the two, clearly the first is closest to the origin.

To finish, we had better show that this point is the closest to the origin on the whole locus

\[
F = \{ (x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = z^2, x + y + z = 3 \}.
\]

Let

\[
K = \{ (x, y, z) \in F \mid x^2 + y^2 + z^2 \leq 25 \}.
\]

Then \(K \) is closed and bounded, whence compact. So \(f \) achieves its minimum somewhere on \(K \), and so it must achieve its minimum at \(p \). Clearly outside \(f \) is at least 25 on \(F \setminus K \), and so \(f \) is a minimum at \(p \) on the whole of \(F \).