
Random Variables

X ∼ FX(x): a random variable X distributed with CDF FX .

Any function Y = g(X) is also a random variable.

If both X, and Y are continuous random variables, can we find a simple way to characterize
FY and fY (the CDF and PDF of Y ), based on the CDF and PDF of X?

■■■

For the CDF:

FY (y) = PY (Y ≤ y)

= PY (g(X) ≤ y)

= PX(x ∈ X : g(X) ≤ y) (X is sample space for X)

=

∫
{x∈X :g(X)≤y}

fX(s)ds.

PDF: fY (y) = F ′
y(y)

Caution: need to consider support of y.

Consider several examples:

1. X ∼ U [−1, 1] and y = exp(x)

That is:

fX(x) =

{
1
2

if x ∈ [−1, 1]
0 otherwise

FX(x) =
1

2
+

1

2
x, for x ∈ [−1, 1].

FY (y) = Prob(exp(X) ≤ y)

= Prob(X ≤ log y)

= FX(log y) =
1

2
+

1

2
log y, for y ∈ [

1

e
, e].

Be careful about the bounds of the support!

fY (y) =
∂

∂y
FY (y)

= fX(log y)
1

y
=

1

2y
, for y ∈ [

1

e
, e].
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2. X ∼ U [−1, 1] and Y = X2

FY (y) = Prob(X2 ≤ y)

= Prob(−√
y ≤ X ≤ √

y)

= FX(
√
y)− FX(−

√
y)

= 2FX(
√
y)− 1, by symmetry: FX(−

√
y) = 1− FX(

√
y).

fY (y) =
∂

∂y
FY (y)

= 2fX(
√
y)

1

2
√
y
=

1

2
√
y
, for y ∈ [0, 1].

■■■

As the first example above showed, it’s easy to derive the CDF and PDF of Y when g(·) is
a strictly monotonic function:

Theorems 2.1.3, 2.1.5: When g(·) is a strictly increasing function, then

FY (y) =

∫ g−1(y)

−∞
fX(x)dx = FX(g

−1(y))

fY (y) = fX(g
−1(y))

∂

∂y
g−1(y) using chain rule.

Note: by the inverse function theorem,

∂

∂y
g−1(y) = 1/ [g′(x)] |x=g−1(y).

When g(·) is a strictly decreasing function, then

FY (y) =

∫ ∞

g−1(y)

fX(x)dx = 1− FX(g
−1(y))

fY (y) = −fX(g
−1(y))

∂

∂y
g−1(y) using chain rule.

These are the change of variables formulas for transformations of univariate random variables.

transformations.

■■■
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Here is a special case of a transformation:

Thm 2.1.10: Let X have a continuous CDF FX(·) and define the random variable Y =
FX(X). Then Y ∼ U [0, 1], i.e., FY (y) = y, for y ∈ [0, 1].

■■■

Expected value (Definition 2.2.1): The expected value, or mean, of a random variable
g(X) is

Eg(X) =

{ ∫∞
−∞ g(x)fX(x)dx if X continuous∑
x∈X g(x)P (X = x) if X discrete

provided that the integral or the sum exists

The expectation is a linear operator (just like integration): so that

E

[
α ∗

n∑
i=1

gi(X) + b

]
= α ∗

n∑
i=1

Egi(X) + b.

Note: Expectation is a population average, i.e., you average values of the random variable
g(X) weighting by the population density fX(x).

A statistical experiment yields a finite sample of observations X1, X2, . . . , Xn ∼ FX . From a
finite sample, you can never know the expectation. From these sample observations, we can
calculate sample avg. X̄n ≡ 1

n

∑
i Xi. In general: X̄n ̸= EX. But under some conditions, as

n → ∞, then X̄n → EX in some sense (which we discuss later).

■■■

Expected value is commonly used measure of “central tendency” of a random variable X.

Example: But mean may not exist: Cauchy random variable with density f(x) = 1
π(1+x2)

for x ∈ (−∞,∞). Note that∫ ∞

−∞

x

π(1 + x2)
dx =

∫ 0

−∞

x

π(1 + x2)
dx+

∫ ∞

0

x

π(1 + x2)
dx

=
0

lim
a→−∞

∫ 0

a

x

π(1 + x2)
dx+ lim

b→∞

∫ b

0

x

π(1 + x2)
dx

=
0

lim
a→−∞

1

2π
[log(1 + x2)]0a + lim

b→∞

1

2π
[log(1 + x2)]b0

= −∞+∞ undefined

■

Other measures:
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1. Median: med(X) = m such that FX(x) = 0.5. Robust to outliers, and has nice
invariance property: for Y = g(X) and g(·) monotonic increasing, then med(Y ) =
g(med(X)).

2. Mode: Mode(X) = maxx fX(x).

■■■

Moments: important class of expectations

For each integer n, the n-th (uncentred) moment of X ∼ FX(·) is µ′
n ≡ EXn.

The n-th centred moment is µn ≡ E(X − µ)n = E(X − EX)n. (It is centred around the
mean EX.)

For n = 2: µ2 = E(X − EX)2 is the Variance of X.
√
µ2 is the standard deviation.

Important formulas:

• V ar(aX + b) = a2V arX (variance is not a linear operation)

• V arX = E(X2)− (EX)2: alternative formula for the variance

■■■

Characteristic function:

The characteristic function of a random variable x, defined as

ϕx(t) = Ex exp(itx) =

∫ +∞

−∞
exp(itx)f(x)dx

where f(x) is the density for x.

This is also called the “Fourier transform”.

Features of characteristic function:

• The CF always exists. This follows from the equality eitx = cos(tx) + i · sin(tx). Note
that the modulus |eitx| =

√
cos2(x) + sin2(x) = 1 for all (t, x) implying E|eitx| = 1 < ∞

for all t.

• Consider a symmetric density function, with f(−x) = f(x) (symmetric around zero).
Then resulting ϕ(t) is real-valued, and symmetric around zero.
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• The CF completely determines the distribution of X (every cdf has a unique charac-
teristic function).

• Let X have characteristic function ϕX(t). Then Y = aX+b has characteristic function
ϕY (t) = eibtϕX(at).

• X and Y , independent, with characteristic functions ϕX(t) and ϕY (t). Then ϕX+Y (t) =
ϕX(t)ϕY (t)

• ϕ(0) = 1.

• For a given characteristic function ϕX(t) such that
∫ +∞
−∞ |ϕX(t)|dt < ∞,1 the corre-

sponding density fX(x) is given by the inverse Fourier transform, which is

fX(x) =
1

2π

∫ +∞

−∞
ϕX(t) exp(−itx)dt.

Example: N(0, 1) distribution, with density f(x) = 1√
2π

exp(−x2/2).

Take as given that the characteristic function of N(0, 1) is

ϕN(0,1)(t) =
1√
2π

∫
exp

(
itx− x2/2)

)
dx = exp(−t2/2). (1)

Hence the inversion formula yields

f(x) =
1

2π

∫ +∞

−∞
exp(−t2/2) exp(−itx)dt.

Now making substitution z = −t, we get

1

2π

∫ +∞

−∞
exp

(
izx− z2/2

)
dz

=
1√
2π

ϕN(0,1)(x) =
1√
2π

exp(x2/2) = fN(0,1)(x). (Use Eq. (1))

• Characteristic function also summarizes the moments of a random variable. Specifi-
cally, note that the h-th derivative of ϕ(t) is

ϕh(t) =

∫ +∞

−∞
ihg(x)h exp(itg(x))f(x)dx. (2)

1Here | · | denotes the modulus of a complex number. For x+ iy, we have |x+ iy| =
√

x2 + y2.
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Hence, assuming the h-th moment, denoted µh
g(x) ≡ E[g(x)]h exists, it is equal to

µh
g(x) = ϕh(0)/ih.

Hence, assuming that the required moments exist, we can use Taylor’s theorem to
expand the characteristic function around t = 0 to get:

ϕ(t) = 1 +
it

1
µ1
g(x) +

(it)2

2
µ2
g(x) + ...+

(it)k

k!
µk
g(x) + o(tk).

• Cauchy distribution, cont’d: The characteristic function for the Cauchy distribu-
tion is

ϕ(t) = exp(−|t|).
This is not differentiable at t = 0, which by Eq. (2) reflects the fact that its mean does
not exist. Hence, the expansion of the characteristic function in this case is invalid.

Moreover, consider the sample mean of iid Cauchy RV’s: X̄n = 1
n
(X1 +X2 + · · ·+Xn)

with each Xi distributed iid Cauchy. Then the c.f. of X̄n is ϕn(t) = E(exp(itX̄n)) =∏n
j=1 E exp(itXj/n) =

∏
j exp(−|t/n|) = exp(−|t|). Averaging over multiple samples

from the Cauchy distribution do not reduce the variance.

■■■

■■■

Multiple random variables

N -dimensional random vector (i.e., vector of random variables) is a function from the sample
space Ω to RN (N -dimensional Euclidean space).

Example: 2-coin toss. Ω = {HH,HT, TH, TT}.

Consider the random vector X⃗ =

(
X1

X2

)
, where X1 = 1(at least one head), and X2 =

1(at least one tail).

Ω X⃗
HH (1,0)
HT (1,1)
TH (1,1)
TT (0,1)

Assuming coin is fair, we can also derive the joint probability distribution function for the
random vector X⃗.
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X⃗ PX⃗

(1,0) 1/4
(1,1) 1/2
(0,1) 1/4

■■■

From the joint probabilities, can we obtain the individual probability distributions for X1

and X2 singly?

Yes, since (for example)

P (X1 = 1) = P (X1 = 1, X2 = 0) + P (X1 = 1, X2 = 1) = 1/4 + 1/2 = 3/4

so that you obtain the marginal probability that X1 = x by summing the probabilities of all
the outcomes in which X1 = x.

■■■

From the joint probabilities, can we derive the conditional probabilities (i.e., if we fixed a
value for X2, what is the conditional distribution of X1 given X2)?

Yes:

P (X1 = 0|X2 = 0) = 0

P (X1 = 1|X2 = 0) = 1

and

P (X1 = 0|X2 = 1) = 1/3

P (X1 = 1|X2 = 1) = 2/3

&etc.

Namely: P (X1|X2 = x) = P (X1, x)/P (X2 = x)

Note: conditional probabilities tell you nothing about causality.

■■■

For this simple example of the 2-coin toss, we have derived the fundamental concepts: (i)
joint probability; (ii) marginal probability; (iii) conditional probability.

More formally, for continuous random variables, we can define the analogous concepts.

Definition 4.1.10:
A function fX1,X2(x1, x2) from R2 to R is called a joint probability density function if, for
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every A ⊂ R2:

P ((X1, X2) ∈ A) =

∫ ∫
︸ ︷︷ ︸

A

fX1,X2(x1, x2)dx1dx2.

The corresponding marginal density function are given by

fX1(x1) =

∫ ∞

−∞
fX1,X2(x1, x2)dx2

fX2(x2) =

∫ ∞

−∞
fX1,X2(x1, x2)dx1.

As before, for the marginal density of X1, you “sum over” all possible values of X2, holding
X1 fixed.

The corresponding conditional density functions are

fX1|X2(x1|x2) =
fX1,X2(x1, x2)

fX2(x2)
=

fX1,X2(x1, x2)∫∞
−∞ fX1,X2(x1, x2)dx1

fX2|X1(x2|x1) =
fX1,X2(x1, x2)

fX1(x1)
=

fX1,X2(x1, x2)∫∞
−∞ fX1,X2(x1, x2)dx2

.

By rewriting the above as

fX1|X2(x1|x2) =
fX2|X1(x2|x1)fX1(x1)∫∞

−∞ fX2|X1(x2|x1)fX1(x1)dx1

we obtain Baye’s Rule for multivariate random variables. In the Bayesian context, the above
expression is interpreted as the “posterior density of x1 given x2”.

These are all density functions: the joint, marginal and conditional density functions all
integrate up to 1.

■■■

Independence of random variables

X1 and X2 are independent iff, for all (x1, x2),

P (X1 ≤ x1;X2 ≤ x2) = FX1,X2(x1, x2)

= FX1(x1) ∗ FX2(x2) = P (X1 ≤ x1) · P (X2 ≤ x2)

When the density exists, we can express independence also as, for all (x1, x2),

fX1,X2(x1, x2) = fX1(x1) ∗ fX2(x2)
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which implies

fX1|X2(x1|x2) = fX1(x1)

fX2|X1(x2|x1) = fX2(x2).

■■■

For conditional densities, it is natural to define:

Conditional expectation:

E(X1|X2 = x2) =

∫ ∞

−∞
xfX1|X2(x|x2)dx.

Conditional CDF:

FX1|X2(x1|x2) = Prob(X1 ≤ x1|X2 = x2) =

∫ x1

−∞
fX1|X2(x|x2)dx.

Conditional CDF can be viewed as a special case of a conditional expectation:
E [1(X1 ≤ x1)|X2].

■■■

Example: X1, X2 distributed uniformly on the triangle (0, 0), (0, 1), (1, 0): that is,

fX1,X2(x1, x2) =

{
2 if x1 + x2 ≤ 1
0 otherwise.

Marginals:

fX1(x1) =

∫ 1−x1

0

2dx2 = 2− 2x1

fX2(x2) =

∫ 1−x2

0

2dx1 = 2− 2x2

Hence, E(X1) =
∫ 1

0
x1(2− 2x1)dx1 = 2

∫ 1

0
(x1 − x2

1)dx1 = 2
[
1
2
x2
1 − 1

3
x3
1

]1
0
= 1

3
.

V ar(X1) = EX2
1 − (EX1)

2 = 1
6
− (1

3
)2 = 1

18

Note: fX1,X2(x1, x2) ̸= fX1(x1) ∗ fX2(x2): so not independent.
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Conditionals:

fX1|X2(x1|x2) = 2/(2− 2x2), for 0 ≤ x1 ≤ 1− x2

fX2|X1(x2|x1) = 2/(2− 2x1)

so

E(X1|X2) =

∫ 1−x2

0

x1
2

2− 2x2

dx1 =
2

2− 2x2

[
1

2
x2
1

]1−x2

0

=
1− x2

2
.

E(X2
1 |X2) =

∫ 1−x2

0

x2
1

1

1− x2

dx1 =
1

1− x2

[
1

3
x3
1

]1−x2

0

=
1

3
∗ (1− x2)

2

so that

V ar(X1|X2) = E(X2
1 |X2)− [E(X1|X2)]

2 =
1

12
(1− x2)

2.

■■■

Note: a useful way to obtain a marginal density is to use the conditional density formula:

fX1(x1) =

∫ ∞

−∞
fX1,X2(x1, x2)dx2 =

∫ ∞

−∞
fX1|X2(x1|x2)fX2(x2)dx2.

This also provides an alternative way to calculate the marginal mean EX1:

EX1 =

∫ ∞

−∞
x1fX1(x1)dx1 =

∫ ∞

−∞
x1

[∫ ∞

−∞
fX1|X2(x1|x2)fX2(x2)dx2

]
dx1

⇒ EX1 =

∫ ∞

−∞

[∫ ∞

−∞
x1fX1|X2(x1|x2)dx1

]
fX2(x2)dx2

= EX2EX1|X2X1

which is the Law of iterated expectations.

(In the last line of the above display, the subscripts on the expectations indicate the proba-
bility distribution that we take the expectations with respect to.)

■■■

Similar expression exists for variance:

V arX1 = EX2V arX1|X2(X1) + V arX2EX1|X2(X1).

■■■
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• Truncated random variables: Let (X, Y ) be jointly distributed according to the joint
density function fX,Y , with support X × Y .

Then the random variables truncated to the region A ∈ X × Y follow the density

fX,Y (x, y)

ProbX,Y (X, Y ∈ A)
=

fX,Y (x, y)∫ ∫
A
fX,Y (x, y)dxdy

with support (X, Y ) ∈ A.

• Multivariate characteristic function

Let X⃗ ≡ (X1, . . . , Xm)
′ denote an m-vector of random variables with joint density

fX⃗(x⃗).

ϕX⃗(t) = E exp(it′x⃗)

=

∫ +∞

−∞
exp(it′x⃗)fX⃗(x⃗)dx⃗

(3)

where t is an m-dimensional real vector.

This suggests that any multivariate distribution is determined by the behavior of linear
combinations of its components. Cramer-Wold device: a Borel probability measure
on Rm is uniquely determined by the totality of its one-dimensional projections. (A
formal statement will come later.)

Clearly: ϕ(0, 0, . . . , 0) = 1
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Transformations of multivariate random variables: some cases

1. X1, X2 ∼ fX1,X2(x1, x2)

Consider the random variable Z = g(X1, X2).

CDF: FZ(z)=Prob(g(X1, X2) ≤ z) =
∫ ∫

g(x1,x2)≤z
fX1,X2(x1, x2)dx1dx2.

PDF: fZ(z) =
∂FZ(z)

∂z
.

Example: triangle problem again; consider g(X1, X2) = X1 +X2.

First, note that support of Z is [0, 1].

FZ(z) = Prob(X1 +X2 ≤ z)

=

∫ z

0

∫ z−x1

0

2dx2dx1

= 2

∫ z

0

(z − x1)dx1

= 2(z2 − 1

2
z2) = z2.

Hence, fz(z) = 2z.

■■■

2. Convolution: X ∼ fX , e ∼ fe, with (X, e) independent. Let Y = X + e. What is fy?

(Ex: measurement error. Y is contaminated version of X)

Fy(y) = P (X + e < y) =

∫ +∞

−∞

∫ y−e

−∞
fX(x)fe(e)dxde

=

∫ +∞

−∞
FX(y − e)fe(e)de

⇒ fy(y) =

∫ +∞

−∞
fX(y − e)fe(e)de

=

∫ +∞

−∞
fX(x)fe(y − x)dx.

Recall: ϕY (t) = ϕX(t)ϕe(t) ⇒ ϕX(t) =
ϕY (t)
ϕe(t)

. This is “deconvolution”.
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■■■

3. Bivariate change of variables

X1, X2 ∼ fX1,X2(x1, x2)

Y1 = g1(X1, X2), Y2 = g2(X1, X2). What is joint density fY1,Y2(y1, y2)?

CDF:

FY1,Y2(y1, y2) = Prob(g1(X1, X2) ≤ y1, g2(X1, X2) ≤ y2)

=

∫ ∫
g1(x1,x2)≤y1, g2(x1,x2)≤y2

fX1,X2(x1, x2)dx1dx2.

PDF: assume that the mapping from (X1, X2) to (Y1, Y2) is one-to-one, which implies that

the system

{
y1 = g1(x1, x2)
y2 = g2(x1, x2)

}
can be inverted to get

{
x1 = h1(y1, y2)
x2 = h2(y1, y2)

}
.

Define the Jacobian matrix Jh =

[
∂h1

∂y1

∂h1

∂y2
∂h2

∂y1

∂h2

∂y2

]
.

Then the bivariate change of variables formula is:

fY1,Y2(y1, y2) = fX1,X2 (h1(y1, y2), h2(y1, y2)) ∗ |J |

where |Jh| denotes the absolute value of the determinant of Jh.

(see heuristic proof in the appendix)

■■■

■■■

Example: Triangle problem again

Consider

Y1 = g1(X1, X2) = X1 +X2

Y2 = g2(X1, X2) = X1 −X2

(4)

Jacobian matrix: inverse mappings are

X1 =
1

2
(Y1 + Y2) ≡ h1(Y1, Y2)

X2 =
1

2
(Y1 − Y2) ≡ h2(Y1, Y2)

(5)
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so J =

[
1
2

1
2

1
2

−1
2

]
and |J | = 1

2
.

Hence,

fY1,Y2(y1, y2) =
1

2
· fX1,X2(

1

2
(y1 + y2),

1

2
(y1 − y2)) = 1,

a uniform distribution.

Support of (Y1, Y2):
(i) From Eqs. (4), you know Y1 ∈ [0, 1], Y2 ∈ [−1, 1]
(ii) 0 ≤ X1 +X2 ≤ 1 ⇒ 0 ≤ Y1 ≤ 1. Redundant.
(iii) 0 ≤ X1 ≤ 1 ⇒ 0 ≤ 1

2
(Y1 + Y2) ≤ 1. Only lower inequality is new, so Y1 ≥ −Y2

(iv) 0 ≤ X2 ≤ 1 ⇒ 0 ≤ 1
2
(Y1 − Y2) ≤ 1. Only lower inequality is new, so Y1 ≥ Y2.

Graph:

■■■

Covariance and Correlation

Notation: µ1 = EX1, µ2 = EX2, σ
2
1 = V arX1, σ

2
2 = V arX2.

Covariance:

Cov(X1, X2) = E [(X1 − µ1) · (X2 − µ2)]

= E(X1X2)− µ1µ2

= E(X1X2)− EX1EX2

taking values in (−∞,∞). (Obviously, Cov(X,X) = V ar(X).)

Correlation:

Corr(X1, X2) ≡ ρX1,X2 =
Cov(X1, X2)

σ1σ2

which is bounded between [−1, 1].
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■■■

Example: triangle problem again

Earlier, we showed µ1 = µ2 = 1/3 and σ2
1 = σ2

2 = 1
18
.

EX1X2 = 2
∫ 1

0

∫ 1−x1

0
x1x2dx2dx1 = 1/12

Hence

Cov(X1, X2) =
1

12
− (

1

3
)2 = −1/36

Corr(X1, X2) =
−1/36

1/18
= −1/2.

■■■

Useful results:

• V ar(aX + bY ) = a2V ar(X) + b2V ar(Y ) + 2abCov(X, Y ). As we remarked before,
Variance is not a linear operator.

• More generally, for Y =
∑n

i=1Xi, we have

V ar(Y ) =
n∑

i=1

V ar(Xi) +
∑
i<j

2 Cov(Xi, Xj).

• If X1 and X2 are independent, then Cov(X1, X2) = 0. Important: the converse is
not true: zero covariance does not imply independence. Covariance only measures
(roughly) a linear relationship between X1 and X2.

Example: X ∼ U [−1, 1] and consider Cov(X,X2)

■■■

(Example: Auctions and the Winner’s Curse) Two bidders participate in an auction
for a painting. Each bidder has the same underlying valuation for the painting, given by the
random variable V ∼ U [0, 1]. Neither bidder knows V .

Each bidder receives a signal about V : Xi|V ∼ U [0, V ], and X1 and X2 are independent,
conditional on V (i.e., fX1,X2(x1, x2|V ) = fX1(x1|V ) · fX2(x2|V )).

(a) Assume each bidder submits a bid equal to her conditional expectation: for bidder 1,
this is E (V |X1). How much does she bid?
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(b) Given this way of bidding, bidder 1 wins if and only if X1 > X2: that is, her signal is
higher than bidder 2’s signal. What is bidder 1’s expected revenue conditional on winning,
that is, her conditional expectation of the value V , given both her signal X1 and the event
that she wins: that is, E [V |X1, X1 > X2]?

Solution (use Baye’s Rule in both steps):

• Part (a):

– f(v|x1) =
f(x1|v)f(v)∫ 1

x1
f(x1|v)f(v)dv

= 1/v∫ 1
x1

1/vdv
= −1/(v log x1).

– Hence: E[v|x1] =
−1

log x1

∫ 1

x1
(v/v)dv = −1

log x1
(1− x1) =

(1−x1)
− log x1

.

• Part (b):

E(v|x1, x2 < x1) =

∫
vf(v|x1, x2 < x1)dv =

∫
vf(x1, v|x2 < x1)dv∫
f(x1, v|x2 < x1)dv

– f(v, x1, x2) = f(x1, x2|v) · f(v) = 1/v2.

– Prob(x2 < x1|v) =
∫ v

0

∫ x1

0
1
v2
dx2dx1 = 1

v2

∫ v

0
x2dx1 = 1/2. Hence also uncondi-

tional Prob(x2 < x1) = 1/2.

– f(v, x1, x2|x1 > x2) =
f(v,x1,x2)
P (x1>x2)

= 2/v2.

– f(v, x1|x1 > x2) =
∫ x1

0
f(v, x1, x2|x1 > x2)dx2 =

2x1

v2

– E(v|x1, x2 > x2) =
∫ 1
x1

v f(v,x1|x1>x2)dv∫ 1
x1

f(v,x1|x1>x2)dv
=

∫ 1
x1

2x1
v

dv∫ v
x1

2x1
v2

dv
= −2x1 log x1

−2x1(1−1/x1)

– Hence: posterior mean is −x1 log x1

1−x1
.

– Graph results of part (a) vs. part (b). The feature that the line for part (b) lies
below that for part (a) is called the “winner’s curse”: if bidders bid naively (i.e.,
according to (a)), their expectated profit is negative.
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Discussion.

• Example of adverse selection: event of winning selects most overly optimistic bidder.

• In equilibrium: bidders will bid more cautiously to avoid winner’s curse.2

• More generally: “pivotal event” (event that your action affects your payoffs) conveys
information which counteracts your own private information

– Pivotal jury voting: with unanimity rule, your vote is “pivotal” (makes a differ-
ence) only when everyone else on the jury has voted to convict.

– Market microstructure: other traders’ willingness-to-trade counteracts your desire
to trade.

2Milgrom and Weber (1982, Econometrica)
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• All these examples assume that agent’s valuations are positively related. What if they
were negatively related?

– Auction for painting which may or may not be by Rembrandt.

– Rembrandt lover vs. Rembrandt hater.

– Each bidders receives noisy signal of whether painting is by Rembrandt.

– Does winner’s curse arise?

■■■

■■■

A Appendix: additional material

A.1 Moment generating function

[SKIP] Moment generating function

The moments of a random variable are summarized in the moment generating function.

Definition: the moment-generating function of X is MX(t) ≡ E exp(tX), provided that the
expectation exists in some neighborhood t ∈ [−h, h] of zero.

Specifically:

Mx(t) =

{ ∫∞
−∞ etxfX(x)dx for X continuous∑
x∈X etxP (X = x) for X discrete.

Series expansion around t = 0: Note that

MX(t) = EetX = 1 + tEX +
t2

2
EX2 +

t3

6
EX3 + ...+

tn

n!
EXn + ...

so that the uncentered moments of X are generated from this function by:

EXn = M
(n)
X (0) ≡ dn

dtn
MX(t)

∣∣∣∣
t=0

,

which is the n-th derivative of the MGF, evaluated at t = 0.

When it exists (see below), then MGF provides alternative description of a probability
distribution. Mathematically, it is a Laplace transform.
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Example: standard normal distribution:

MX(t) =

∫ ∞

−∞

1√
2π

exp

(
tx− x2

2

)
dx

=

∫ ∞

−∞

1√
2π

exp

(
−1

2
((x− t)2 − t2)

)
dx

= exp(
1

2
t2) ·

∫ ∞

−∞

1√
2π

exp

(
−1

2
(x− t)2

)
dx

= exp(
1

2
t2) · 1

where last term on RHS is integral over density function of N(t, 1), which integrates to one.

First moment: EX = M1
X(0) = t · exp(1

2
t2)

∣∣
t=0

= 0.

Second moment: EX2 = M2
X(0) = exp(1

2
t2) + t2 exp(1

2
t2) = 1.

■■■

In many cases, the MGF can characterize a distribution. But problem is that it may not
exist (eg. Cauchy distribution)

For a RV X, is its distribution uniquely determined by its moment generating function?

Thm 2.3.11: For X ∼ FX and Y ∼ FY , if MX and MY exist, and MX(t) = MY (t) for all t
in some neighborhood of zero, then FX(u) = FY (u) for all u.

If the MGF exists, then it characterizes a random variable with an infinite number of mo-
ments (because the MGF is infinitely differentiable).

Ex: log-normality. If X ∼ N(0, 1), then Y = exp(X) is log-normal distributed. We have
EY = e1/2 and generally EY m = em

2/2 so all the moments exist. But E exp(tY ) → ∞ for
all t. Note that by the expansion (for t around zero)

EetY = 1 + te1/2 +
t2

2
e1 + ...+

tn

n!
en/2 + ...

= lim
n→∞

n∑
i=1

ti

i!
ei/2 → ∞.

.1 Heuristic argument for bivariate change of variables

[skip] To get some intuition for the above result, consider the probability that the random
variables (y1, y2) lie within the rectangle(y∗1, y

∗
2)︸ ︷︷ ︸

≡A

, (y∗1 + dy1, y
∗
2)︸ ︷︷ ︸

≡B

, (y∗1, y
∗
2 + dy2)︸ ︷︷ ︸
≡C

, (y∗1 + dy1, y
∗
2 + dy2)︸ ︷︷ ︸

≡D

 .
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For dy1 > 0, dy2 > 0 small, this is approximately

fy1,y2(y
∗
1, y

∗
2)dy1dy2 (6)

which, in turn, is approximately

fx1,x2(h1(y
∗
1, y

∗
2)︸ ︷︷ ︸

≡h∗
1

, h2(y
∗
1, y

∗
2)︸ ︷︷ ︸

≡h∗
2

)“dx1dx2”. (7)

In the above, dx1 is the change in x1 occasioned by the changes from y∗1 to y∗1 +dy1 and from
y∗2 to y∗2 + dy2.

Eq. (6) is the area of the rectangle formed from points (A,B,C,D) multiplied by the density
fy1,y2(y

∗
1, y

∗
2). Similarly, Eq. (7) is the density fx1,x2(h

∗
1, h

∗
2) multiplying “dx1dx2”, which is

the area of a parallelogram defined by the four points (A′, B′, C ′, D′):

A = (y∗1, y
∗
2) →A′ = (h∗

1, h
∗
2)

B = (y∗1 + dy1, y
∗
2) →B′ = (h1(B), h2(B)) ≈ (h∗

1 + dy1
∂h1

∂y∗1
, h∗

2 + dy1
∂h2

∂y∗1
)

C = (y∗1, y
∗
2 + dy2) →C ′ ≈ (h∗

1 + dy2
∂h1

∂y∗2
, h∗

2 + dy2
∂h2

∂y∗2
)

D = (y∗1 + dy1, y
∗
2 + dy2) →D′ ≈ (h∗

1 + dy1
∂h1

∂y∗1
+ dy2

∂h1

∂y∗2
, h∗

2 + dy1
∂h2

∂y∗1
+ dy2

∂h2

∂y∗2
)

In defining the points B′, C ′, D′, we have used first-order approximations of h1(y
∗
1, y

∗
2 + dy2)

around (y∗1, y
∗
2); etc.

The area of (A′B′C ′D′) is the same as the area of the parallelogram formed by the two
vectors

a⃗ ≡
(
dy1

∂h1

∂y∗1
, dy1

∂h2

∂y∗1

)′

; b⃗ ≡
(
dy2

∂h1

∂y∗2
, dy2

∂h2

∂y∗2

)′

.

The area of this is given by the length of the cross-product

|⃗a× b⃗| = |det [⃗a, b⃗]| = dy1dy2

∣∣∣∣∂h1

∂y∗1

∂h2

∂y∗2
− ∂h1

∂y∗2

∂h2

∂y∗1

∣∣∣∣ = dy1dy2|Jh|.

Hence, by equating (6) and (7) and substituting in the above, we obtain the desired formula.
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