Random Variables

$X \sim F_{X}(x):$ a random variable X distributed with CDF F_{X}.
Any function $Y=g(X)$ is also a random variable.
If both X, and Y are continuous random variables, can we find a simple way to characterize F_{Y} and f_{Y} (the CDF and PDF of Y), based on the CDF and PDF of X ?
$\square \square$
For the CDF:

$$
\begin{aligned}
F_{Y}(y) & =P_{Y}(Y \leq y) \\
& =P_{Y}(g(X) \leq y) \\
& =P_{X}(x \in \mathcal{X}: g(X) \leq y)(\mathcal{X} \text { is sample space for } X) \\
& =\int_{\{x \in \mathcal{X}: g(X) \leq y\}} f_{X}(s) d s .
\end{aligned}
$$

PDF: $f_{Y}(y)=F_{y}^{\prime}(y)$
Caution: need to consider support of y.
Consider several examples:

1. $X \sim U[-1,1]$ and $y=\exp (x)$

That is:

$$
\begin{aligned}
& f_{X}(x)= \begin{cases}\frac{1}{2} & \text { if } x \in[-1,1] \\
0 & \text { otherwise }\end{cases} \\
& F_{X}(x)=\frac{1}{2}+\frac{1}{2} x, \text { for } x \in[-1,1] . \\
F_{Y}(y)= & \operatorname{Prob}(\exp (X) \leq y) \\
= & \operatorname{Prob}(X \leq \log y) \\
= & F_{X}(\log y)=\frac{1}{2}+\frac{1}{2} \log y, \text { for } y \in\left[\frac{1}{e}, e\right] .
\end{aligned}
$$

Be careful about the bounds of the support!

$$
\begin{aligned}
f_{Y}(y) & =\frac{\partial}{\partial y} F_{Y}(y) \\
& =f_{X}(\log y) \frac{1}{y}=\frac{1}{2 y}, \text { for } y \in\left[\frac{1}{e}, e\right] .
\end{aligned}
$$

2. $X \sim U[-1,1]$ and $Y=X^{2}$

$$
\begin{aligned}
F_{Y}(y)= & \operatorname{Prob}\left(X^{2} \leq y\right) \\
= & \operatorname{Prob}(-\sqrt{y} \leq X \leq \sqrt{y}) \\
= & F_{X}(\sqrt{y})-F_{X}(-\sqrt{y}) \\
= & 2 F_{X}(\sqrt{y})-1, \text { by symmetry: } F_{X}(-\sqrt{y})=1-F_{X}(\sqrt{y}) \\
& \quad f_{Y}(y)=\frac{\partial}{\partial y} F_{Y}(y) \\
& =2 f_{X}(\sqrt{y}) \frac{1}{2 \sqrt{y}}=\frac{1}{2 \sqrt{y}}, \text { for } y \in[0,1]
\end{aligned}
$$

■■

As the first example above showed, it's easy to derive the CDF and PDF of Y when $g(\cdot)$ is a strictly monotonic function:
Theorems 2.1.3, 2.1.5: When $g(\cdot)$ is a strictly increasing function, then

$$
\begin{aligned}
F_{Y}(y) & =\int_{-\infty}^{g^{-1}(y)} f_{X}(x) d x=F_{X}\left(g^{-1}(y)\right) \\
f_{Y}(y) & =f_{X}\left(g^{-1}(y)\right) \frac{\partial}{\partial y} g^{-1}(y) \text { using chain rule. }
\end{aligned}
$$

Note: by the inverse function theorem,

$$
\frac{\partial}{\partial y} g^{-1}(y)=1 /\left.\left[g^{\prime}(x)\right]\right|_{x=g^{-1}(y)}
$$

When $g(\cdot)$ is a strictly decreasing function, then

$$
\begin{aligned}
F_{Y}(y) & =\int_{g^{-1}(y)}^{\infty} f_{X}(x) d x=1-F_{X}\left(g^{-1}(y)\right) \\
f_{Y}(y) & =-f_{X}\left(g^{-1}(y)\right) \frac{\partial}{\partial y} g^{-1}(y) \text { using chain rule. }
\end{aligned}
$$

These are the change of variables formulas for transformations of univariate random variables. transformations.

Here is a special case of a transformation:
Thm 2.1.10: Let X have a continuous $\operatorname{CDF} F_{X}(\cdot)$ and define the random variable $Y=$ $F_{X}(X)$. Then $Y \sim U[0,1]$, i.e., $F_{Y}(y)=y$, for $y \in[0,1]$.

■■
Expected value (Definition 2.2.1): The expected value, or mean, of a random variable $g(X)$ is

$$
E g(X)= \begin{cases}\int_{-\infty}^{\infty} g(x) f_{X}(x) d x & \text { if } X \text { continuous } \\ \sum_{x \in \mathcal{X}} g(x) P(X=x) & \text { if } X \text { discrete }\end{cases}
$$

provided that the integral or the sum exists
The expectation is a linear operator (just like integration): so that

$$
E\left[\alpha * \sum_{i=1}^{n} g_{i}(X)+b\right]=\alpha * \sum_{i=1}^{n} E g_{i}(X)+b
$$

Note: Expectation is a population average, i.e., you average values of the random variable $g(X)$ weighting by the population density $f_{X}(x)$.
A statistical experiment yields a finite sample of observations $X_{1}, X_{2}, \ldots, X_{n} \sim F_{X}$. From a finite sample, you can never know the expectation. From these sample observations, we can calculate sample avg. $\bar{X}_{n} \equiv \frac{1}{n} \sum_{i} X_{i}$. In general: $\bar{X}_{n} \neq E X$. But under some conditions, as $n \rightarrow \infty$, then $\bar{X}_{n} \rightarrow E X$ in some sense (which we discuss later).

■ \quad 표
Expected value is commonly used measure of "central tendency" of a random variable X.
Example: But mean may not exist: Cauchy random variable with density $f(x)=\frac{1}{\pi\left(1+x^{2}\right)}$ for $x \in(-\infty, \infty)$. Note that

$$
\begin{aligned}
\int_{-\infty}^{\infty} \frac{x}{\pi\left(1+x^{2}\right)} d x & =\int_{-\infty}^{0} \frac{x}{\pi\left(1+x^{2}\right)} d x+\int_{0}^{\infty} \frac{x}{\pi\left(1+x^{2}\right)} d x \\
& =\lim _{a \rightarrow-\infty}^{0} \int_{a}^{0} \frac{x}{\pi\left(1+x^{2}\right)} d x+\lim _{b \rightarrow \infty} \int_{0}^{b} \frac{x}{\pi\left(1+x^{2}\right)} d x \\
& =\lim _{a \rightarrow-\infty}^{0} \frac{1}{2 \pi}\left[\log \left(1+x^{2}\right)\right]_{a}^{0}+\lim _{b \rightarrow \infty} \frac{1}{2 \pi}\left[\log \left(1+x^{2}\right)\right]_{0}^{b} \\
& =-\infty+\infty \quad \text { undefined }
\end{aligned}
$$

Other measures:

1. Median: $\operatorname{med}(X)=m$ such that $F_{X}(x)=0.5$. Robust to outliers, and has nice invariance property: for $Y=g(X)$ and $g(\cdot)$ monotonic increasing, then $\operatorname{med}(Y)=$ $g(\operatorname{med}(X))$.
2. Mode: $\operatorname{Mode}(X)=\max _{x} f_{X}(x)$.
$\square \square$
Moments: important class of expectations
For each integer n, the n-th (uncentred) moment of $X \sim F_{X}(\cdot)$ is $\mu_{n}^{\prime} \equiv E X^{n}$.
The n-th centred moment is $\mu_{n} \equiv E(X-\mu)^{n}=E(X-E X)^{n}$. (It is centred around the mean $E X$.)

For $n=2: \mu_{2}=E(X-E X)^{2}$ is the Variance of $X . \sqrt{\mu_{2}}$ is the standard deviation.
Important formulas:

- $\operatorname{Var}(a X+b)=a^{2} \operatorname{Var} X$ (variance is not a linear operation)
- $\operatorname{Var} X=E\left(X^{2}\right)-(E X)^{2}$: alternative formula for the variance

$\square \square$

Characteristic function:

The characteristic function of a random variable x, defined as

$$
\phi_{x}(t)=E_{x} \exp (i t x)=\int_{-\infty}^{+\infty} \exp (i t x) f(x) d x
$$

where $f(x)$ is the density for x.
This is also called the "Fourier transform".
Features of characteristic function:

- The CF always exists. This follows from the equality $e^{i t x}=\cos (t x)+i \cdot \sin (t x)$. Note that the modulus $\left|e^{i t x}\right|=\sqrt{\cos ^{2}(x)+\sin ^{2}(x)}=1$ for all (t, x) implying $E\left|e^{i t x}\right|=1<\infty$ for all t.
- Consider a symmetric density function, with $f(-x)=f(x)$ (symmetric around zero). Then resulting $\phi(t)$ is real-valued, and symmetric around zero.
- The CF completely determines the distribution of X (every cdf has a unique characteristic function).
- Let X have characteristic function $\phi_{X}(t)$. Then $Y=a X+b$ has characteristic function $\phi_{Y}(t)=e^{i b t} \phi_{X}(a t)$.
- X and Y, independent, with characteristic functions $\phi_{X}(t)$ and $\phi_{Y}(t)$. Then $\phi_{X+Y}(t)=$ $\phi_{X}(t) \phi_{Y}(t)$
- $\phi(0)=1$.
- For a given characteristic function $\phi_{X}(t)$ such that $\int_{-\infty}^{+\infty}\left|\phi_{X}(t)\right| d t<\infty,{ }^{1}$ the corresponding density $f_{X}(x)$ is given by the inverse Fourier transform, which is

$$
f_{X}(x)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \phi_{X}(t) \exp (-i t x) d t
$$

Example: $N(0,1)$ distribution, with density $f(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-x^{2} / 2\right)$.
Take as given that the characteristic function of $N(0,1)$ is

$$
\begin{equation*}
\left.\phi_{N(0,1)}(t)=\frac{1}{\sqrt{2 \pi}} \int \exp \left(i t x-x^{2} / 2\right)\right) d x=\exp \left(-t^{2} / 2\right) \tag{1}
\end{equation*}
$$

Hence the inversion formula yields

$$
f(x)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \exp \left(-t^{2} / 2\right) \exp (-i t x) d t
$$

Now making substitution $z=-t$, we get

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{-\infty}^{+\infty} \exp \left(i z x-z^{2} / 2\right) d z \\
= & \frac{1}{\sqrt{2 \pi}} \phi_{N(0,1)}(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(x^{2} / 2\right)=f_{N(0,1)}(x) . \quad \text { (Use Eq. (1)) }
\end{aligned}
$$

- Characteristic function also summarizes the moments of a random variable. Specifically, note that the h-th derivative of $\phi(t)$ is

$$
\begin{equation*}
\phi^{h}(t)=\int_{-\infty}^{+\infty} i^{h} g(x)^{h} \exp (i \operatorname{tg}(x)) f(x) d x \tag{2}
\end{equation*}
$$

[^0]Hence, assuming the h-th moment, denoted $\mu_{g(x)}^{h} \equiv E[g(x)]^{h}$ exists, it is equal to

$$
\mu_{g(x)}^{h}=\phi^{h}(0) / i^{h} .
$$

Hence, assuming that the required moments exist, we can use Taylor's theorem to expand the characteristic function around $t=0$ to get:

$$
\phi(t)=1+\frac{i t}{1} \mu_{g(x)}^{1}+\frac{(i t)^{2}}{2} \mu_{g(x)}^{2}+\ldots+\frac{(i t)^{k}}{k!} \mu_{g(x)}^{k}+o\left(t^{k}\right) .
$$

- Cauchy distribution, cont'd: The characteristic function for the Cauchy distribution is

$$
\phi(t)=\exp (-|t|)
$$

This is not differentiable at $t=0$, which by Eq. (2) reflects the fact that its mean does not exist. Hence, the expansion of the characteristic function in this case is invalid.
Moreover, consider the sample mean of iid Cauchy RV's: $\bar{X}_{n}=\frac{1}{n}\left(X_{1}+X_{2}+\cdots+X_{n}\right)$ with each X_{i} distributed iid Cauchy. Then the c.f. of \bar{X}_{n} is $\phi_{n}(t)=\mathbb{E}\left(\exp \left(i t \bar{X}_{n}\right)\right)=$ $\prod_{j=1}^{n} \mathbb{E} \exp \left(i t X_{j} / n\right)=\prod_{j} \exp (-|t / n|)=\exp (-|t|)$. Averaging over multiple samples from the Cauchy distribution do not reduce the variance.

Multiple random variables

N-dimensional random vector (i.e., vector of random variables) is a function from the sample space Ω to \mathcal{R}^{N} (N-dimensional Euclidean space).

Example: 2-coin toss. $\Omega=\{H H, H T, T H, T T\}$.
Consider the random vector $\vec{X}=\binom{X_{1}}{X_{2}}$, where $X_{1}=\mathbf{1}$ (at least one head), and $X_{2}=$ $\mathbf{1}$ (at least one tail).

Ω	\vec{X}
HH	$(1,0)$
HT	$(1,1)$
TH	$(1,1)$
TT	$(0,1)$

Assuming coin is fair, we can also derive the joint probability distribution function for the random vector \vec{X}.

\vec{X}	$P_{\vec{X}}$
$(1,0)$	$1 / 4$
$(1,1)$	$1 / 2$
$(0,1)$	$1 / 4$

■

From the joint probabilities, can we obtain the individual probability distributions for X_{1} and X_{2} singly?

Yes, since (for example)

$$
P\left(X_{1}=1\right)=P\left(X_{1}=1, X_{2}=0\right)+P\left(X_{1}=1, X_{2}=1\right)=1 / 4+1 / 2=3 / 4
$$

so that you obtain the marginal probability that $X_{1}=x$ by summing the probabilities of all the outcomes in which $X_{1}=x$.

From the joint probabilities, can we derive the conditional probabilities (i.e., if we fixed a value for X_{2}, what is the conditional distribution of X_{1} given X_{2})?

Yes:

$$
\begin{aligned}
& P\left(X_{1}=0 \mid X_{2}=0\right)=0 \\
& P\left(X_{1}=1 \mid X_{2}=0\right)=1
\end{aligned}
$$

and

$$
\begin{aligned}
& P\left(X_{1}=0 \mid X_{2}=1\right)=1 / 3 \\
& P\left(X_{1}=1 \mid X_{2}=1\right)=2 / 3
\end{aligned}
$$

\&etc.
Namely: $P\left(X_{1} \mid X_{2}=x\right)=P\left(X_{1}, x\right) / P\left(X_{2}=x\right)$
Note: conditional probabilities tell you nothing about causality.

For this simple example of the 2-coin toss, we have derived the fundamental concepts: (i) joint probability; (ii) marginal probability; (iii) conditional probability.

More formally, for continuous random variables, we can define the analogous concepts.
Definition 4.1.10:
A function $f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)$ from \mathcal{R}^{2} to \mathcal{R} is called a joint probability density function if, for
every $A \subset \mathcal{R}^{2}$:

$$
P\left(\left(X_{1}, X_{2}\right) \in A\right)=\underbrace{\iint}_{A} f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d x_{1} d x_{2} .
$$

The corresponding marginal density function are given by

$$
\begin{aligned}
& f_{X_{1}}\left(x_{1}\right)=\int_{-\infty}^{\infty} f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d x_{2} \\
& f_{X_{2}}\left(x_{2}\right)=\int_{-\infty}^{\infty} f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d x_{1}
\end{aligned}
$$

As before, for the marginal density of X_{1}, you "sum over" all possible values of X_{2}, holding X_{1} fixed.

The corresponding conditional density functions are

$$
\begin{aligned}
& f_{X_{1} \mid X_{2}}\left(x_{1} \mid x_{2}\right)=\frac{f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)}{f_{X_{2}}\left(x_{2}\right)}=\frac{f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)}{\int_{-\infty}^{\infty} f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d x_{1}} \\
& f_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right)=\frac{f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)}{f_{X_{1}}\left(x_{1}\right)}=\frac{f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)}{\int_{-\infty}^{\infty} f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d x_{2}}
\end{aligned}
$$

By rewriting the above as

$$
f_{X_{1} \mid X_{2}}\left(x_{1} \mid x_{2}\right)=\frac{f_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right) f_{X_{1}}\left(x_{1}\right)}{\int_{-\infty}^{\infty} f_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right) f_{X_{1}}\left(x_{1}\right) d x_{1}}
$$

we obtain Baye's Rule for multivariate random variables. In the Bayesian context, the above expression is interpreted as the "posterior density of x_{1} given x_{2} ".

These are all density functions: the joint, marginal and conditional density functions all integrate up to 1 .

Independence of random variables

X_{1} and X_{2} are independent iff, for all $\left(x_{1}, x_{2}\right)$,

$$
\begin{aligned}
P\left(X_{1} \leq x_{1} ; X_{2} \leq x_{2}\right) & =F_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) \\
& =F_{X_{1}}\left(x_{1}\right) * F_{X_{2}}\left(x_{2}\right)=P\left(X_{1} \leq x_{1}\right) \cdot P\left(X_{2} \leq x_{2}\right)
\end{aligned}
$$

When the density exists, we can express independence also as, for all $\left(x_{1}, x_{2}\right)$,

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=f_{X_{1}}\left(x_{1}\right) * f_{X_{2}}\left(x_{2}\right)
$$

which implies

$$
\begin{aligned}
& f_{X_{1} \mid X_{2}}\left(x_{1} \mid x_{2}\right)=f_{X_{1}}\left(x_{1}\right) \\
& f_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right)=f_{X_{2}}\left(x_{2}\right) .
\end{aligned}
$$

$\square \square$

For conditional densities, it is natural to define:

Conditional expectation:

$$
E\left(X_{1} \mid X_{2}=x_{2}\right)=\int_{-\infty}^{\infty} x f_{X_{1} \mid X_{2}}\left(x \mid x_{2}\right) d x
$$

Conditional CDF:

$$
F_{X_{1} \mid X_{2}}\left(x_{1} \mid x_{2}\right)=\operatorname{Prob}\left(X_{1} \leq x_{1} \mid X_{2}=x_{2}\right)=\int_{-\infty}^{x_{1}} f_{X_{1} \mid X_{2}}\left(x \mid x_{2}\right) d x
$$

Conditional CDF can be viewed as a special case of a conditional expectation: $E\left[\mathbf{1}\left(X_{1} \leq x_{1}\right) \mid X_{2}\right]$.

$\square \square$

Example: X_{1}, X_{2} distributed uniformly on the triangle $(0,0),(0,1),(1,0)$: that is,

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)= \begin{cases}2 & \text { if } x_{1}+x_{2} \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Marginals:

$$
\begin{aligned}
& f_{X_{1}}\left(x_{1}\right)=\int_{0}^{1-x_{1}} 2 d x_{2}=2-2 x_{1} \\
& f_{X_{2}}\left(x_{2}\right)=\int_{0}^{1-x_{2}} 2 d x_{1}=2-2 x_{2}
\end{aligned}
$$

Hence, $E\left(X_{1}\right)=\int_{0}^{1} x_{1}\left(2-2 x_{1}\right) d x_{1}=2 \int_{0}^{1}\left(x_{1}-x_{1}^{2}\right) d x_{1}=2\left[\frac{1}{2} x_{1}^{2}-\frac{1}{3} x_{1}^{3}\right]_{0}^{1}=\frac{1}{3}$.
$\operatorname{Var}\left(X_{1}\right)=E X_{1}^{2}-\left(E X_{1}\right)^{2}=\frac{1}{6}-\left(\frac{1}{3}\right)^{2}=\frac{1}{18}$
Note: $f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) \neq f_{X_{1}}\left(x_{1}\right) * f_{X_{2}}\left(x_{2}\right)$: so not independent.

Conditionals:

$$
\begin{aligned}
& f_{X_{1} \mid X_{2}}\left(x_{1} \mid x_{2}\right)=2 /\left(2-2 x_{2}\right), \text { for } 0 \leq x_{1} \leq 1-x_{2} \\
& f_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right)=2 /\left(2-2 x_{1}\right)
\end{aligned}
$$

so

$$
\begin{gathered}
E\left(X_{1} \mid X_{2}\right)=\int_{0}^{1-x_{2}} x_{1} \frac{2}{2-2 x_{2}} d x_{1}=\frac{2}{2-2 x_{2}}\left[\frac{1}{2} x_{1}^{2}\right]_{0}^{1-x_{2}}=\frac{1-x_{2}}{2} . \\
E\left(X_{1}^{2} \mid X_{2}\right)=\int_{0}^{1-x_{2}} x_{1}^{2} \frac{1}{1-x_{2}} d x_{1}=\frac{1}{1-x_{2}}\left[\frac{1}{3} x_{1}^{3}\right]_{0}^{1-x_{2}}=\frac{1}{3} *\left(1-x_{2}\right)^{2}
\end{gathered}
$$

so that

$$
\operatorname{Var}\left(X_{1} \mid X_{2}\right)=E\left(X_{1}^{2} \mid X_{2}\right)-\left[E\left(X_{1} \mid X_{2}\right)\right]^{2}=\frac{1}{12}\left(1-x_{2}\right)^{2} .
$$

Note: a useful way to obtain a marginal density is to use the conditional density formula:

$$
f_{X_{1}}\left(x_{1}\right)=\int_{-\infty}^{\infty} f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d x_{2}=\int_{-\infty}^{\infty} f_{X_{1} \mid X_{2}}\left(x_{1} \mid x_{2}\right) f_{X_{2}}\left(x_{2}\right) d x_{2}
$$

This also provides an alternative way to calculate the marginal mean $E X_{1}$:

$$
\begin{aligned}
E X_{1} & =\int_{-\infty}^{\infty} x_{1} f_{X_{1}}\left(x_{1}\right) d x_{1}=\int_{-\infty}^{\infty} x_{1}\left[\int_{-\infty}^{\infty} f_{X_{1} \mid X_{2}}\left(x_{1} \mid x_{2}\right) f_{X_{2}}\left(x_{2}\right) d x_{2}\right] d x_{1} \\
\Rightarrow E X_{1} & =\int_{-\infty}^{\infty}\left[\int_{-\infty}^{\infty} x_{1} f_{X_{1} \mid X_{2}}\left(x_{1} \mid x_{2}\right) d x_{1}\right] f_{X_{2}}\left(x_{2}\right) d x_{2} \\
& =E_{X_{2}} E_{X_{1} \mid X_{2}} X_{1}
\end{aligned}
$$

which is the Law of iterated expectations.
(In the last line of the above display, the subscripts on the expectations indicate the probability distribution that we take the expectations with respect to.)

$\square \square$

Similar expression exists for variance:

$$
\operatorname{Var} X_{1}=E_{X_{2}} \operatorname{Var}_{X_{1} \mid X_{2}}\left(X_{1}\right)+\operatorname{Var}_{X_{2}} E_{X_{1} \mid X_{2}}\left(X_{1}\right) .
$$

- Truncated random variables: Let (X, Y) be jointly distributed according to the joint density function $f_{X, Y}$, with support $\mathcal{X} \times \mathcal{Y}$.
Then the random variables truncated to the region $A \in \mathcal{X} \times \mathcal{Y}$ follow the density

$$
\frac{f_{X, Y}(x, y)}{\operatorname{Prob}_{X, Y}(X, Y \in A)}=\frac{f_{X, Y}(x, y)}{\iint_{A} f_{X, Y}(x, y) d x d y}
$$

with support $(X, Y) \in A$.

- Multivariate characteristic function

Let $\vec{X} \equiv\left(X_{1}, \ldots, X_{m}\right)^{\prime}$ denote an m-vector of random variables with joint density $f_{\vec{X}}(\vec{x})$.

$$
\begin{align*}
\phi_{\vec{X}}(t) & =\mathbb{E} \exp \left(i t^{\prime} \vec{x}\right) \\
& =\int_{-\infty}^{+\infty} \exp \left(i t^{\prime} \vec{x}\right) f_{\vec{X}}(\vec{x}) d \vec{x} \tag{3}
\end{align*}
$$

where t is an m-dimensional real vector.
This suggests that any multivariate distribution is determined by the behavior of linear combinations of its components. Cramer-Wold device: a Borel probability measure on \mathbb{R}^{m} is uniquely determined by the totality of its one-dimensional projections. (A formal statement will come later.)
Clearly: $\phi(0,0, \ldots, 0)=1$

Transformations of multivariate random variables: some cases

1. $X_{1}, X_{2} \sim f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)$

Consider the random variable $Z=g\left(X_{1}, X_{2}\right)$.
CDF: $F_{Z}(z)=\operatorname{Prob}\left(g\left(X_{1}, X_{2}\right) \leq z\right)=\iint_{g\left(x_{1}, x_{2}\right) \leq z} f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d x_{1} d x_{2}$.
PDF: $f_{Z}(z)=\frac{\partial F_{Z}(z)}{\partial z}$.
Example: triangle problem again; consider $g\left(X_{1}, X_{2}\right)=X_{1}+X_{2}$.
First, note that support of Z is $[0,1]$.

$$
\begin{aligned}
F_{Z}(z) & =\operatorname{Prob}\left(X_{1}+X_{2} \leq z\right) \\
& =\int_{0}^{z} \int_{0}^{z-x_{1}} 2 d x_{2} d x_{1} \\
& =2 \int_{0}^{z}\left(z-x_{1}\right) d x_{1} \\
& =2\left(z^{2}-\frac{1}{2} z^{2}\right)=z^{2} .
\end{aligned}
$$

Hence, $f_{z}(z)=2 z$.

■

2. Convolution: $X \sim f_{X}, e \sim f_{e}$, with (X, e) independent. Let $Y=X+e$. What is f_{y} ? (Ex: measurement error. Y is contaminated version of X)

$$
\begin{aligned}
F_{y}(y)=P(X+e<y) & =\int_{-\infty}^{+\infty} \int_{-\infty}^{y-e} f_{X}(x) f_{e}(e) d x d e \\
& =\int_{-\infty}^{+\infty} F_{X}(y-e) f_{e}(e) d e \\
\Rightarrow f_{y}(y) & =\int_{-\infty}^{+\infty} f_{X}(y-e) f_{e}(e) d e \\
& =\int_{-\infty}^{+\infty} f_{X}(x) f_{e}(y-x) d x
\end{aligned}
$$

Recall: $\phi_{Y}(t)=\phi_{X}(t) \phi_{e}(t) \Rightarrow \phi_{X}(t)=\frac{\phi_{Y}(t)}{\phi_{e}(t)}$. This is "deconvolution".

$\square \square$

3. Bivariate change of variables
$X_{1}, X_{2} \sim f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)$
$Y_{1}=g_{1}\left(X_{1}, X_{2}\right), Y_{2}=g_{2}\left(X_{1}, X_{2}\right)$. What is joint density $f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)$?
CDF:

$$
\begin{aligned}
F_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right) & =\operatorname{Prob}\left(g_{1}\left(X_{1}, X_{2}\right) \leq y_{1}, g_{2}\left(X_{1}, X_{2}\right) \leq y_{2}\right) \\
& =\iint_{g_{1}\left(x_{1}, x_{2}\right) \leq y_{1}, g_{2}\left(x_{1}, x_{2}\right) \leq y_{2}} f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d x_{1} d x_{2} .
\end{aligned}
$$

PDF: assume that the mapping from $\left(X_{1}, X_{2}\right)$ to $\left(Y_{1}, Y_{2}\right)$ is one-to-one, which implies that the system $\left\{\begin{array}{l}y_{1}=g_{1}\left(x_{1}, x_{2}\right) \\ y_{2}=g_{2}\left(x_{1}, x_{2}\right)\end{array}\right\}$ can be inverted to get $\left\{\begin{array}{l}x_{1}=h_{1}\left(y_{1}, y_{2}\right) \\ x_{2}=h_{2}\left(y_{1}, y_{2}\right)\end{array}\right\}$.
Define the Jacobian matrix $J_{h}=\left[\begin{array}{cc}\frac{\partial h_{1}}{\partial y_{1}} & \frac{\partial h_{1}}{\partial y_{2}} \\ \frac{\partial h_{2}}{\partial y_{1}} & \frac{\partial h_{2}}{\partial y_{2}}\end{array}\right]$.
Then the bivariate change of variables formula is:

$$
f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)=f_{X_{1}, X_{2}}\left(h_{1}\left(y_{1}, y_{2}\right), h_{2}\left(y_{1}, y_{2}\right)\right) *|J|
$$

where $\left|J_{h}\right|$ denotes the absolute value of the determinant of J_{h}. (see heuristic proof in the appendix)
$\square \square$
$\square \square$
Example: Triangle problem again
Consider

$$
\begin{align*}
& Y_{1}=g_{1}\left(X_{1}, X_{2}\right)=X_{1}+X_{2} \\
& Y_{2}=g_{2}\left(X_{1}, X_{2}\right)=X_{1}-X_{2} \tag{4}
\end{align*}
$$

Jacobian matrix: inverse mappings are

$$
\begin{align*}
X_{1} & =\frac{1}{2}\left(Y_{1}+Y_{2}\right) \equiv h_{1}\left(Y_{1}, Y_{2}\right) \\
X_{2} & =\frac{1}{2}\left(Y_{1}-Y_{2}\right) \equiv h_{2}\left(Y_{1}, Y_{2}\right) \tag{5}
\end{align*}
$$

so $J=\left[\begin{array}{ll}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2}\end{array}\right]$ and $|J|=\frac{1}{2}$.
Hence,

$$
f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)=\frac{1}{2} \cdot f_{X_{1}, X_{2}}\left(\frac{1}{2}\left(y_{1}+y_{2}\right), \frac{1}{2}\left(y_{1}-y_{2}\right)\right)=1,
$$

a uniform distribution.
Support of $\left(Y_{1}, Y_{2}\right)$:
(i) From Eqs. (4), you know $Y_{1} \in[0,1], Y_{2} \in[-1,1]$
(ii) $0 \leq X_{1}+X_{2} \leq 1 \Rightarrow 0 \leq Y_{1} \leq 1$. Redundant.
(iii) $0 \leq X_{1} \leq 1 \Rightarrow 0 \leq \frac{1}{2}\left(Y_{1}+Y_{2}\right) \leq 1$. Only lower inequality is new, so $Y_{1} \geq-Y_{2}$
(iv) $0 \leq X_{2} \leq 1 \Rightarrow 0 \leq \frac{1}{2}\left(Y_{1}-Y_{2}\right) \leq 1$. Only lower inequality is new, so $Y_{1} \geq Y_{2}$.

Graph:

$\square \square$

Covariance and Correlation

Notation: $\mu_{1}=E X_{1}, \mu_{2}=E X_{2}, \sigma_{1}^{2}=\operatorname{Var} X_{1}, \sigma_{2}^{2}=\operatorname{Var} X_{2}$.

Covariance:

$$
\begin{aligned}
\operatorname{Cov}\left(X_{1}, X_{2}\right) & =E\left[\left(X_{1}-\mu_{1}\right) \cdot\left(X_{2}-\mu_{2}\right)\right] \\
& =E\left(X_{1} X_{2}\right)-\mu_{1} \mu_{2} \\
& =E\left(X_{1} X_{2}\right)-E X_{1} E X_{2}
\end{aligned}
$$

taking values in $(-\infty, \infty)$. (Obviously, $\operatorname{Cov}(X, X)=\operatorname{Var}(X)$.
Correlation:

$$
\operatorname{Corr}\left(X_{1}, X_{2}\right) \equiv \rho_{X_{1}, X_{2}}=\frac{\operatorname{Cov}\left(X_{1}, X_{2}\right)}{\sigma_{1} \sigma_{2}}
$$

which is bounded between $[-1,1]$.

■

Example: triangle problem again
Earlier, we showed $\mu_{1}=\mu_{2}=1 / 3$ and $\sigma_{1}^{2}=\sigma_{2}^{2}=\frac{1}{18}$.
$E X_{1} X_{2}=2 \int_{0}^{1} \int_{0}^{1-x_{1}} x_{1} x_{2} d x_{2} d x_{1}=1 / 12$
Hence

$$
\begin{aligned}
& \operatorname{Cov}\left(X_{1}, X_{2}\right)=\frac{1}{12}-\left(\frac{1}{3}\right)^{2}=-1 / 36 \\
& \operatorname{Corr}\left(X_{1}, X_{2}\right)=\frac{-1 / 36}{1 / 18}=-1 / 2
\end{aligned}
$$

■II

Useful results:

- $\operatorname{Var}(a X+b Y)=a^{2} \operatorname{Var}(X)+b^{2} \operatorname{Var}(Y)+2 a b \operatorname{Cov}(X, Y)$. As we remarked before, Variance is not a linear operator.
- More generally, for $Y=\sum_{i=1}^{n} X_{i}$, we have

$$
\operatorname{Var}(Y)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)+\sum_{i<j} 2 \operatorname{Cov}\left(X_{i}, X_{j}\right)
$$

- If X_{1} and X_{2} are independent, then $\operatorname{Cov}\left(X_{1}, X_{2}\right)=0$. Important: the converse is not true: zero covariance does not imply independence. Covariance only measures (roughly) a linear relationship between X_{1} and X_{2}.
Example: $X \sim U[-1,1]$ and consider $\operatorname{Cov}\left(X, X^{2}\right)$
(Example: Auctions and the Winner's Curse) Two bidders participate in an auction for a painting. Each bidder has the same underlying valuation for the painting, given by the random variable $V \sim U[0,1]$. Neither bidder knows V.

Each bidder receives a signal about $V: X_{i} \mid V \sim U[0, V]$, and X_{1} and X_{2} are independent, conditional on V (i.e., $f_{X_{1}, X_{2}}\left(x_{1}, x_{2} \mid V\right)=f_{X_{1}}\left(x_{1} \mid V\right) \cdot f_{X_{2}}\left(x_{2} \mid V\right)$).
(a) Assume each bidder submits a bid equal to her conditional expectation: for bidder 1, this is $E\left(V \mid X_{1}\right)$. How much does she bid?
(b) Given this way of bidding, bidder 1 wins if and only if $X_{1}>X_{2}$: that is, her signal is higher than bidder 2's signal. What is bidder 1's expected revenue conditional on winning, that is, her conditional expectation of the value V, given both her signal X_{1} and the event that she wins: that is, $E\left[V \mid X_{1}, X_{1}>X_{2}\right]$?
Solution (use Baye's Rule in both steps):

- Part (a):
$-f\left(v \mid x_{1}\right)=\frac{f\left(x_{1} \mid v\right) f(v)}{\int_{x_{1}}^{1} f\left(x_{1} \mid v\right) f(v) d v}=\frac{1 / v}{\int_{x_{1}}^{1} 1 / v d v}=-1 /\left(v \log x_{1}\right)$.
- Hence: $E\left[v \mid x_{1}\right]=\frac{-1}{\log x_{1}} \int_{x_{1}}^{1}(v / v) d v=\frac{-1}{\log x_{1}}\left(1-x_{1}\right)=\frac{\left(1-x_{1}\right)}{-\log x_{1}}$.
- Part (b):

$$
E\left(v \mid x_{1}, x_{2}<x_{1}\right)=\int v f\left(v \mid x_{1}, x_{2}<x_{1}\right) d v=\frac{\int v f\left(x_{1}, v \mid x_{2}<x_{1}\right) d v}{\int f\left(x_{1}, v \mid x_{2}<x_{1}\right) d v}
$$

$-f\left(v, x_{1}, x_{2}\right)=f\left(x_{1}, x_{2} \mid v\right) \cdot f(v)=1 / v^{2}$.
$-\operatorname{Prob}\left(x_{2}<x_{1} \mid v\right)=\int_{0}^{v} \int_{0}^{x_{1}} \frac{1}{v^{2}} d x_{2} d x_{1}=\frac{1}{v^{2}} \int_{0}^{v} x_{2} d x_{1}=1 / 2$. Hence also unconditional $\operatorname{Prob}\left(x_{2}<x_{1}\right)=1 / 2$.
$-f\left(v, x_{1}, x_{2} \mid x_{1}>x_{2}\right)=\frac{f\left(v, x_{1}, x_{2}\right)}{P\left(x_{1}>x_{2}\right)}=2 / v^{2}$.
$-f\left(v, x_{1} \mid x_{1}>x_{2}\right)=\int_{0}^{x_{1}} f\left(v, x_{1}, x_{2} \mid x_{1}>x_{2}\right) d x_{2}=\frac{2 x_{1}}{v^{2}}$
$-E\left(v \mid x_{1}, x_{2}>x_{2}\right)=\frac{\int_{x_{1}}^{1} v f\left(v, x_{1} \mid x_{1}>x_{2}\right) d v}{\int_{x_{1}}^{1} f\left(v, x_{1} \mid x_{1}>x_{2}\right) d v}=\frac{\int_{x_{1}}^{1} \frac{2 x_{1}}{v} d v}{\int_{x_{1}}^{v} \frac{2 x_{1}}{v^{2}} d v}=\frac{-2 x_{1} \log x_{1}}{-2 x_{1}\left(1-1 / x_{1}\right)}$

- Hence: posterior mean is $\frac{-x_{1} \log x_{1}}{1-x_{1}}$.
- Graph results of part (a) vs. part (b). The feature that the line for part (b) lies below that for part (a) is called the "winner's curse": if bidders bid naively (i.e., according to (a)), their expectated profit is negative.

Discussion.

- Example of adverse selection: event of winning selects most overly optimistic bidder.
- In equilibrium: bidders will bid more cautiously to avoid winner's curse. ${ }^{2}$
- More generally: "pivotal event" (event that your action affects your payoffs) conveys information which counteracts your own private information
- Pivotal jury voting: with unanimity rule, your vote is "pivotal" (makes a difference) only when everyone else on the jury has voted to convict.
- Market microstructure: other traders' willingness-to-trade counteracts your desire to trade.

[^1]- All these examples assume that agent's valuations are positively related. What if they were negatively related?
- Auction for painting which may or may not be by Rembrandt.
- Rembrandt lover vs. Rembrandt hater.
- Each bidders receives noisy signal of whether painting is by Rembrandt.
- Does winner's curse arise?

A Appendix: additional material

A. 1 Moment generating function

[SKIP] Moment generating function

The moments of a random variable are summarized in the moment generating function.
Definition: the moment-generating function of X is $M_{X}(t) \equiv E \exp (t X)$, provided that the expectation exists in some neighborhood $t \in[-h, h]$ of zero.
Specifically:

$$
M_{x}(t)= \begin{cases}\int_{-\infty}^{\infty} e^{t x} f_{X}(x) d x & \text { for } X \text { continuous } \\ \sum_{x \in \mathcal{X}} e^{t x} P(X=x) & \text { for } X \text { discrete }\end{cases}
$$

Series expansion around $t=0$: Note that

$$
M_{X}(t)=E e^{t X}=1+t E X+\frac{t^{2}}{2} E X^{2}+\frac{t^{3}}{6} E X^{3}+\ldots+\frac{t^{n}}{n!} E X^{n}+\ldots
$$

so that the uncentered moments of X are generated from this function by:

$$
E X^{n}=\left.M_{X}^{(n)}(0) \equiv \frac{d^{n}}{d t^{n}} M_{X}(t)\right|_{t=0},
$$

which is the n-th derivative of the MGF, evaluated at $t=0$.
When it exists (see below), then MGF provides alternative description of a probability distribution. Mathematically, it is a Laplace transform.

Example: standard normal distribution:

$$
\begin{aligned}
M_{X}(t) & =\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(t x-\frac{x^{2}}{2}\right) d x \\
& =\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left((x-t)^{2}-t^{2}\right)\right) d x \\
& =\exp \left(\frac{1}{2} t^{2}\right) \cdot \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2}(x-t)^{2}\right) d x \\
& =\exp \left(\frac{1}{2} t^{2}\right) \cdot 1
\end{aligned}
$$

where last term on RHS is integral over density function of $N(t, 1)$, which integrates to one.
First moment: $E X=M_{X}^{1}(0)=\left.t \cdot \exp \left(\frac{1}{2} t^{2}\right)\right|_{t=0}=0$.
Second moment: $E X^{2}=M_{X}^{2}(0)=\exp \left(\frac{1}{2} t^{2}\right)+t^{2} \exp \left(\frac{1}{2} t^{2}\right)=1$.

$\square \square$

In many cases, the MGF can characterize a distribution. But problem is that it may not exist (eg. Cauchy distribution)

For a RV X, is its distribution uniquely determined by its moment generating function?
Thm 2.3.11: For $X \sim F_{X}$ and $Y \sim F_{Y}$, if M_{X} and M_{Y} exist, and $M_{X}(t)=M_{Y}(t)$ for all t in some neighborhood of zero, then $F_{X}(u)=F_{Y}(u)$ for all u.

If the MGF exists, then it characterizes a random variable with an infinite number of moments (because the MGF is infinitely differentiable).

Ex: \log-normality. If $X \sim N(0,1)$, then $Y=\exp (X)$ is log-normal distributed. We have $E Y=e^{1 / 2}$ and generally $E Y^{m}=e^{m^{2} / 2}$ so all the moments exist. But $E \exp (t Y) \rightarrow \infty$ for all t. Note that by the expansion (for t around zero)

$$
\begin{aligned}
E e^{t Y} & =1+t e^{1 / 2}+\frac{t^{2}}{2} e^{1}+\ldots+\frac{t^{n}}{n!} e^{n / 2}+\ldots \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{t^{i}}{i!} e^{i / 2} \rightarrow \infty
\end{aligned}
$$

. 1 Heuristic argument for bivariate change of variables

[skip] To get some intuition for the above result, consider the probability that the random variables $\left(y_{1}, y_{2}\right)$ lie within the rectangle

$$
\{\underbrace{\left(y_{1}^{*}, y_{2}^{*}\right)}_{\equiv A}, \underbrace{\left(y_{1}^{*}+d y_{1}, y_{2}^{*}\right)}_{\equiv B}, \underbrace{\left(y_{1}^{*}, y_{2}^{*}+d y_{2}\right)}_{\equiv C}, \underbrace{\left(y_{1}^{*}+d y_{1}, y_{2}^{*}+d y_{2}\right)}_{\equiv D}\} .
$$

For $d y_{1}>0, d y_{2}>0$ small, this is approximately

$$
\begin{equation*}
f_{y_{1}, y_{2}}\left(y_{1}^{*}, y_{2}^{*}\right) d y_{1} d y_{2} \tag{6}
\end{equation*}
$$

which, in turn, is approximately

$$
\begin{equation*}
f_{x_{1}, x_{2}}(\underbrace{h_{1}\left(y_{1}^{*}, y_{2}^{*}\right)}_{\equiv h_{1}^{*}}, \underbrace{h_{2}\left(y_{1}^{*}, y_{2}^{*}\right)}_{\equiv h_{2}^{*}}) \text { "d } x_{1} d x_{2} \text { ". } \tag{7}
\end{equation*}
$$

In the above, $d x_{1}$ is the change in x_{1} occasioned by the changes from y_{1}^{*} to $y_{1}^{*}+d y_{1}$ and from y_{2}^{*} to $y_{2}^{*}+d y_{2}$.
Eq. (6) is the area of the rectangle formed from points (A, B, C, D) multiplied by the density $f_{y_{1}, y_{2}}\left(y_{1}^{*}, y_{2}^{*}\right)$. Similarly, Eq. (7) is the density $f_{x_{1}, x_{2}}\left(h_{1}^{*}, h_{2}^{*}\right)$ multiplying " $d x_{1} d x_{2}$ ", which is the area of a parallelogram defined by the four points $\left(A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}\right)$:

$$
\begin{aligned}
& A=\left(y_{1}^{*}, y_{2}^{*}\right) \rightarrow A^{\prime}=\left(h_{1}^{*}, h_{2}^{*}\right) \\
& B=\left(y_{1}^{*}+d y_{1}, y_{2}^{*}\right) \rightarrow B^{\prime}=\left(h_{1}(B), h_{2}(B)\right) \approx\left(h_{1}^{*}+d y_{1} \frac{\partial h_{1}}{\partial y_{1}^{*}}, h_{2}^{*}+d y_{1} \frac{\partial h_{2}}{\partial y_{1}^{*}}\right) \\
& C=\left(y_{1}^{*}, y_{2}^{*}+d y_{2}\right) \rightarrow C^{\prime} \approx\left(h_{1}^{*}+d y_{2} \frac{\partial h_{1}}{\partial y_{2}^{*}}, h_{2}^{*}+d y_{2} \frac{\partial h_{2}}{\partial y_{2}^{*}}\right) \\
& D=\left(y_{1}^{*}+d y_{1}, y_{2}^{*}+d y_{2}\right) \rightarrow D^{\prime} \approx\left(h_{1}^{*}+d y_{1} \frac{\partial h_{1}}{\partial y_{1}^{*}}+d y_{2} \frac{\partial h_{1}}{\partial y_{2}^{*}}, h_{2}^{*}+d y_{1} \frac{\partial h_{2}}{\partial y_{1}^{*}}+d y_{2} \frac{\partial h_{2}}{\partial y_{2}^{*}}\right)
\end{aligned}
$$

In defining the points $B^{\prime}, C^{\prime}, D^{\prime}$, we have used first-order approximations of $h_{1}\left(y_{1}^{*}, y_{2}^{*}+d y_{2}\right)$ around (y_{1}^{*}, y_{2}^{*}); etc.
The area of $\left(A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right)$ is the same as the area of the parallelogram formed by the two vectors

$$
\vec{a} \equiv\left(d y_{1} \frac{\partial h_{1}}{\partial y_{1}^{*}}, d y_{1} \frac{\partial h_{2}}{\partial y_{1}^{*}}\right)^{\prime} ; \quad \vec{b} \equiv\left(d y_{2} \frac{\partial h_{1}}{\partial y_{2}^{*}}, d y_{2} \frac{\partial h_{2}}{\partial y_{2}^{*}}\right)^{\prime}
$$

The area of this is given by the length of the cross-product

$$
|\vec{a} \times \vec{b}|=|\operatorname{det}[\vec{a}, \vec{b}]|=d y_{1} d y_{2}\left|\frac{\partial h_{1}}{\partial y_{1}^{*}} \frac{\partial h_{2}}{\partial y_{2}^{*}}-\frac{\partial h_{1}}{\partial y_{2}^{*}} \frac{\partial h_{2}}{\partial y_{1}^{*}}\right|=d y_{1} d y_{2}\left|J_{h}\right| .
$$

Hence, by equating (6) and (7) and substituting in the above, we obtain the desired formula.

[^0]: ${ }^{1}$ Here $|\cdot|$ denotes the modulus of a complex number. For $x+i y$, we have $|x+i y|=\sqrt{x^{2}+y^{2}}$.

[^1]: ${ }^{2}$ Milgrom and Weber (1982, Econometrica)

