Transformations and Expectations of random variables

\[X \sim F_X(x) : \text{a random variable } X \text{ distributed with CDF } F_X. \]

Any function \(Y = g(X) \) is also a random variable.

If both \(X \), and \(Y \) are continuous random variables, can we find a simple way to characterize \(F_Y \) and \(f_Y \) (the CDF and PDF of \(Y \)), based on the CDF and PDF of \(X \)?

For the CDF:

\[
F_Y(y) = P_Y(Y \leq y) \\
= P_Y(g(X) \leq y) \\
= P_X(x \in \mathcal{X} : g(X) \leq y) \quad (\mathcal{X} \text{ is sample space for } X) \\
= \int_{\{x \in \mathcal{X} : g(x) \leq y\}} f_X(s) \, ds.
\]

PDF:

\[
f_Y(y) = F'_Y(y)
\]

Caution: need to consider support of \(y \).

Consider several examples:

1. \(X \sim U[-1, 1] \) and \(y = \exp(x) \)
 That is:

 \[
 f_X(x) = \begin{cases}
 \frac{1}{2} & \text{if } x \in [-1, 1] \\
 0 & \text{otherwise}
 \end{cases}

 F_X(x) = \frac{1}{2} + \frac{1}{2}x, \text{ for } x \in [-1, 1].

 F_Y(y) = P_{\text{prob}}(\exp(X) \leq y) \\
 = P_{\text{prob}}(X \leq \log y) \\
 = F_X(\log y) = \frac{1}{2} + \frac{1}{2} \log y, \text{ for } y \in [\frac{1}{e}, e].

 Be careful about the bounds of the support!

 \[
f_Y(y) = \frac{\partial}{\partial y} F_Y(y) \\
= f_X(\log y) \frac{1}{y} = \frac{1}{2y}, \text{ for } y \in [\frac{1}{e}, e].
\]
2. $X \sim U[-1, 1]$ and $Y = X^2$

$F_Y(y) = \text{Prob}(X^2 \leq y)$

$= \text{Prob}(-\sqrt{y} \leq X \leq \sqrt{y})$

$= F_X(\sqrt{y}) - F_X(-\sqrt{y})$

$= 2F_X(\sqrt{y}) - 1$, by symmetry: $F_X(-\sqrt{y}) = 1 - F_X(\sqrt{y})$.

$f_Y(y) = \frac{\partial}{\partial y} F_Y(y)$

$= 2f_X(\sqrt{y}) \frac{1}{2\sqrt{y}} = \frac{1}{2\sqrt{y}}$, for $y \in [0, 1]$.

As the first example above showed, it’s easy to derive the CDF and PDF of Y when $g(\cdot)$ is a strictly monotonic function:

Theorems 2.1.3, 2.1.5: When $g(\cdot)$ is a strictly increasing function, then

$$F_Y(y) = \int_{-\infty}^{g^{-1}(y)} f_X(x)dx = F_X(g^{-1}(y))$$

$$f_Y(y) = f_X(g^{-1}(y)) \frac{\partial}{\partial y} g^{-1}(y) \text{ using chain rule.}$$

Note: by the inverse function theorem,

$$\frac{\partial}{\partial y} g^{-1}(y) = 1 / [g'(x)]_{x=g^{-1}(y)}.$$

When $g(\cdot)$ is a strictly decreasing function, then

$$F_Y(y) = \int_{g^{-1}(y)}^{\infty} f_X(x)dx = 1 - F_X(g^{-1}(y))$$

$$f_Y(y) = -f_X(g^{-1}(y)) \frac{\partial}{\partial y} g^{-1}(y) \text{ using chain rule.}$$

These are the *change of variables* formulas for transformations of univariate random variables.

Thm 2.1.8 generalizes this to piecewise monotonic transformations.
Here is a special case of a transformation:

Thm 2.1.10: Let X have a continuous CDF $F_X(\cdot)$ and define the random variable $Y = F_X(X)$. Then $Y \sim U[0, 1]$, i.e., $F_Y(y) = y$, for $y \in [0, 1]$.

Note: all that is required is that the CDF F_X is continuous, not that it must be strictly increasing. The result also goes through when F_X is continuous but has flat parts (cf. discussion in CB, pg. 34).

\[\begin{align*}
\end{align*}\]

Expected value (Definition 2.2.1): The expected value, or mean, of a random variable $g(X)$ is

\[
Eg(X) = \begin{cases}
\int_{-\infty}^{x} g(x) f_X(x) dx & \text{if } X \text{ continuous} \\
\sum_{x \in X} g(x) P(X = x) & \text{if } X \text{ discrete}
\end{cases}
\]

provided that the integral or the sum exists

The expectation is a *linear operator* (just like integration): so that

\[
E \left[\alpha \sum_{i=1}^{n} g_i(X) + b \right] = \alpha \sum_{i=1}^{n} E g_i(X) + b.
\]

Note: Expectation is a *population average*, i.e., you average values of the random variable $g(X)$ weighting by the population density $f_X(x)$.

A statistical experiment yields sample observations $X_1, X_2, \ldots, X_n \sim F_X$. From these sample observations, we can calculate sample avg. $\bar{X}_n \equiv \frac{1}{n} \sum_i X_i$. In general: $\bar{X}_n \neq E X$. But under some conditions, as $n \to \infty$, then $\bar{X}_n \to EX$ in some sense (which we discuss later).

\[\begin{align*}
\end{align*}\]

Expected value is commonly used measure of “central tendency” of a random variable X.

Example: But mean may not exist: Cauchy random variable with density $f(x) = \frac{1}{\pi(1+x^2)}$ for $x \in (-\infty, \infty)$. Note that

\[
\int_{-\infty}^{\infty} \frac{x}{\pi(1 + x^2)} \, dx = \int_{-\infty}^{0} \frac{x}{\pi(1 + x^2)} \, dx + \int_{0}^{\infty} \frac{x}{\pi(1 + x^2)} \, dx
\]

\[
= \lim_{a \to -\infty} \int_{a}^{0} \frac{x}{\pi(1 + x^2)} \, dx + \lim_{b \to \infty} \int_{0}^{b} \frac{x}{\pi(1 + x^2)} \, dx
\]

\[
= \lim_{a \to -\infty} \frac{1}{2\pi} \left[\log(1 - x^2) \right]_{a}^{0} + \lim_{b \to \infty} \frac{1}{2\pi} \left[\log(1 - x^2) \right]_{a}^{b}
\]

\[-\infty + \infty \quad \text{undefined}\]
Other measures:

1. Median: $\text{med}(X) = m$ such that $F_X(x) = 0.5$. Robust to outliers, and has nice invariance property: for $Y = g(X)$ and $g(\cdot)$ monotonic increasing, then $\text{med}(Y) = g(\text{med}(X))$.

2. Mode: $\text{Mode}(X) = \max_x f_X(x)$.

Moments: important class of expectations

For each integer n, the n-th (uncentred) moment of $X \sim F_X(\cdot)$ is $\mu'_n \equiv EX^n$.

The n-th centred moment is $\mu_n \equiv E(X - \mu)^n = E(X - EX)^n$. (It is centred around the mean EX.)

For $n = 2$: $\mu_2 = E(X - EX)^2$ is the Variance of X. $\sqrt{\mu_2}$ is the standard deviation.

Important formulas:

- $Var(aX + b) = a^2 VarX$ (variance is not a linear operation)
- $VarX = E(X^2) - (EX)^2$: alternative formula for the variance

The moments of a random variable are summarized in the moment generating function.

Definition: the moment-generating function of X is $M_X(t) \equiv E \exp(tX)$, provided that the expectation exists in some neighborhood $t \in [-h, h]$ of zero.

This is also called the “Laplace transform”.

Specifically:

$$M_X(t) = \left\{ \begin{array}{ll} \int_{-\infty}^{\infty} e^{tx} f_X(x) dx & \text{for } X \text{ continuous} \\ \sum_{x \in X} e^{tx} P(X = x) & \text{for } X \text{ discrete.} \end{array} \right.$$

The uncentred moments of X are generated from this function by:

$$EX^n = M_X^{(n)}(0) \equiv \left. \frac{d^n}{dt^n} M_X(t) \right|_{t=0},$$
which is the \(n \)-th derivative of the MGF, evaluated at \(t = 0 \).

Example: standard normal distribution:

\[
M_X(t) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} \exp \left(tx - \frac{x^2}{2} \right) dx = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} \exp \left(-\frac{1}{2}((x-t)^2 - t^2) \right) dx = \exp \left(\frac{1}{2}t^2 \right) \cdot \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} \exp \left(-\frac{1}{2}(x-t)^2 \right) dx = \exp \left(\frac{1}{2}t^2 \right) \cdot 1
\]

where last term on RHS is integral over density function of \(N(t, 1) \), which integrates to one.

First moment: \(EX = M_1^X(0) = t \cdot \exp \left(\frac{1}{2}t^2 \right) \bigg|_{t=0} = 0 \).

Second moment: \(EX^2 = M_2^X(0) = \exp \left(\frac{1}{2}t^2 \right) + t^2 \exp \left(\frac{1}{2}t^2 \right) = 1 \).

In many cases, the MGF can characterize a distribution. But problem is that it may not exist (eg. Cauchy distribution)

For a RV \(X \), is its distribution uniquely determined by its moment generating function?

Thm 2.3.11: For \(X \sim F_X \) and \(Y \sim F_Y \), if \(M_X \) and \(M_Y \) exist, and \(M_X(t) = M_Y(t) \) for all \(t \) in some neighborhood of zero, then \(F_X(u) = F_Y(u) \) for all \(u \).

Note that if the MGF exists, then it characterizes a random variable with an *infinite* number of moments (because the MGF is infinitely differentiable). Converse not necessarily true. (ex. log-normal random variable: \(X \sim N(0, 1), Y = \exp(X) \))

Characteristic function:

The characteristic function of a random variable \(g(x) \), defined as

\[
\phi_{g(x)}(t) = E_x \exp(itg(x)) = \int_{-\infty}^{\infty} \exp(itg(x))f(x)dx
\]

where \(f(x) \) is the density for \(x \).

This is also called the “Fourier transform”.

Features of characteristic function:
• The CF always exists. This follows from the equality $e^{itx} = \cos(tx) + i \cdot \sin(tx)$, and both the real and complex parts of the integrand are bounded functions.

• Consider a symmetric density function, with $f(-x) = f(x)$ (symmetric around zero). Then resulting $\phi(t)$ is real-valued, and symmetric around zero.

• The CF completely determines the distribution of X (every cdf has a unique characteristic function).

• Let X have characteristic function $\phi_X(t)$. Then $Y = aX + b$ has characteristic function $\phi_Y(t) = e^{ibt} \phi_X(at)$.

• X and Y, independent, with characteristic functions $\phi_X(t)$ and $\phi_Y(t)$. Then $\phi_{X+Y}(t) = \phi_X(t)\phi_Y(t)$

• $\phi(0) = 1$.

• For a given characteristic function $\phi_X(t)$ such that $\int_{-\infty}^{+\infty} |\phi_X(t)| dt < \infty$, the corresponding density $f_X(x)$ is given by the inverse Fourier transform, which is

$$f_X(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \phi_X(t) \exp(-itx) dt.$$

Example: $N(0, 1)$ distribution, with density $f(x) = \frac{1}{\sqrt{2\pi}} \exp(-x^2/2)$.

Take as given that the characteristic function of $N(0, 1)$ is

$$\phi_{N(0,1)}(t) = \frac{1}{\sqrt{2\pi}} \int \exp \left(i tx - x^2/2 \right) dx = \exp(-t^2/2). \tag{1}$$

Hence the inversion formula yields

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \exp(-t^2/2) \exp(-itx) dt.$$

Now making substitution $z = -t$, we get

$$\frac{1}{2\pi} \int_{-\infty}^{+\infty} \exp \left(i zx - z^2/2 \right) dz$$

$$= \frac{1}{\sqrt{2\pi}} \phi_{N(0,1)}(x) = \frac{1}{\sqrt{2\pi}} \exp(x^2/2) = f_{N(0,1)}(x). \quad \text{(Use Eq. (1))}$$

\footnote{Here $|\cdot|$ denotes the modulus of a complex number. For $x + iy$, we have $|x + iy| = \sqrt{x^2 + y^2}$.}
• Characteristic function also summarizes the moments of a random variable. Specifically, note that the h-th derivative of $\phi(t)$ is

$$\phi^h(t) = \int_{-\infty}^{+\infty} i^h g(x)^h \exp(itg(x)) f(x) dx.$$ \hspace{1cm} (2)

Hence, assuming the h-th moment, denoted $\mu^h_{g(x)} \equiv E[g(x)]^h$ exists, it is equal to

$$\mu^h_{g(x)} = \phi^h(0)/i^h.$$

Hence, assuming that the required moments exist, we can “expand” the characteristic function around $t = 0$ to get:

$$\phi(t) = 1 + \frac{it}{1!}\mu^1_{g(x)} + \frac{(it)^2}{2!}\mu^2_{g(x)} + ... + \frac{(it)^k}{k!}\mu^k_{g(x)} + o(t^k).$$

• **Cauchy distribution, cont’d:** The characteristic function for the Cauchy distribution is

$$\phi(t) = \exp(-|t|).$$

This is not differentiable at $t = 0$, which by Eq. (2) is saying that its mean does not exist. Hence, the expansion of the characteristic function in this case is invalid.