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Single-agent dynamic optimization models: estimation and
identification

1 Alternative approaches to estimation: avoid numeric dy-

namic programming

1.1 Hotz-Miller approach

• One problem with Rust approach to estimating dynamic discrete-choice model

very computer intensive. Requires using numeric dynamic programming to

compute the value function(s) for every parameter vector θ.

• Alternative method of estimation, which avoids explicit DP. Present main ideas

and motivation using a simplified version of Hotz and Miller (1993), Hotz, Miller,

Sanders, and Smith (1994).

• For simplicity, think about Harold Zurcher model.

• What do we observe in data from DDC framework? For bus j, time t, observe:

– {xjt, ijt}: observed state variables xjt and discrete decision (control) vari-

able ijt.

Let j = 1, . . . , N index the buses, t = 1, . . . , T index the time periods.

– For Harold Zurcher model: xjt is mileage since last replacement on bus i

in period t, and ijt is whether or not engine of bus j was replaced in period

t.

– Unobserved state variables: εjt, i.i.d. over j and t. Assume that distribu-

tion is known (Type 1 Extreme Value in Rust model)

1.2 Hats and Tildes

In the following, let quantities with hats ’̂s denote objects obtained just from data.

Objects with tildes ’̃s denote “predicted” quantities, obtained from both data and

calculated from model given parameter values θ.

Hats. From this data alone, we can estimate (or “identify”):
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• Choice probabilities, conditional on state variable: Prob (i = 1|x)1, estimated

by

P̂ (i = 1|x) ≡
N∑
i=1

T∑
t=1

1∑
i

∑
t 1 (xjt = x)

· 1 (ijt = 1, xjt = x) .

Since Prob (i = 0|x) = 1−Prob (i = 1|x), we have P̂ (i = 0|x) = 1− P̂ (i = 1|x).

• Transition probabilities of observed state and control variables: G(x′|x, i)2, es-

timated by conditional empirical distribution

Ĝ(x′|x, i) ≡

{ ∑N
i=1

∑T−1
t=1

1∑
i

∑
t 1(xjt=x,ijt=0)

· 1 (xj,t+1 ≤ x′, xjt = x, ijt = 0) , if i = 0∑N
i=1

∑T−1
t=1

1∑
i

∑
t 1(ijt=1)

· 1 (xj,t+1 ≤ x′, ijt = 1) , if i = 1.

• In practice, when x is continuous, we estimate smoothed version of these func-

tions by introducing a “smoothing weight” wjt = w(xjt;x) such that
∑

j

∑
twjt =

1. Then, for instance, the choice probability is approximated by

p̂(i = 1|x) =
∑
j

∑
t

wjt1(ijt = 1).

One possibility for the weights is a kernel-weighting function. Consider a kernel

function k(·) which is symmetric around 0 and integrates to 1. Then

wjt =
k
(xjt−x

h

)∑
j′
∑

t′ k
(
xj′t′−x

h

) .
h is a bandwidth. Note that as h→ 0, then wit → 1(xjt=x)∑

j′
∑

t′ 1(xj′t′=x)
.

Tildes and forward simulation. Let Ṽ (x, i; θ) denote the choice-specific value

function, minus the error term εi.

With estimates of Ĝ(·|·) and p̂(·|·), as well as a parameter vector θ, you can “estimate”

these choice-specific value functions by exploiting an alternative representation of

value function: letting i∗ denote the optimal sequence of decisions, we have:

V (xt, εt) = E

[
∞∑
τ=0

βτt
{
u(xτ , i

∗
t ) + εi∗t

}
.|xt, εt

]
1By stationarity, note we do not index this probability explicitly with time t.
2By stationarity, note we do not index the G function explicitly with time t.
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This implies that the choice-specific value functions can be obtained by constructing

the sum3

Ṽ (x, i = 1; θ) =u(x, i = 1; θ) + βEx′|x,i=1Ei′|x′Eε′|i′,x′ [u(x′, i′; θ) + ε′i′

+βEx′′|x′,i′Ei′′|x′′Eε′|i′′,x′′
[
u(x′′, i′′; θ) + ε

′′

i′′ + β · · ·
]]

Ṽ (x, i = 0; θ) =u(x, i = 0; θ) + βEx′|x,i=0Ei′|x′Eε′|i′,x′ [u(x′, i′; θ) + ε′i′

+βEx′′|x′,i′Ei′′|x′′Eε′|i′′,x′′ [u(x′′, i′′; θ) + ε′′i′′ + β · · ·]
]
.

Here u(x, i; θ) denotes the per-period utility of taking choice i at state x, without

the additive logit error. Note that the knowledge of i′|x′ is crucial to being able to

forward-simulate the choice-specific value functions. Otherwise, i′|x′ is multinomial

with probabilities given by Eq. (1) below, and is impossible to calculate without

knowledge of the choice-specific value functions.

In practice, “truncate” the infinite sum at some period T :

Ṽ (x, i = 1; θ) =u(x, i = 1; θ) + βEx′|x,i=1Ei′|x′Eε′′|i′,x′ [u(x′, i′; θ) + ε′

+ βEx′′|x′,i′′Ei′′|x′′Eε′|i′′,x′′ [u(x′′, i′′; θ) + ε′′ + · · ·
βExT |xT−1,iT−1EiT |xTEεT |iT ,xT

[
u(xT , iT ; θ) + εT

]]]
Also, the expectation Eε|i,x denotes the expectation of the εi conditional on choice i

being taken, and current mileage x. For the logit case, there is a closed form:

E[εi|i, x] = γ − log(Pr(i|x))

where γ is Euler’s constant (0.577...) and Pr(i|x) is the choice probability of action

i at state x.

Both of the other expectations in the above expressions are observed directly from

the data.

Both choice-specific value functions can be simulated by (for i = 1, 2):

Ṽ (x, i; θ) ≈ =
1

S

∑
s

[
u(x, i; θ) + β

[
u(x′

s
, i′

s
; θ) + γ − log(P̂ (i′

s|x′s))

+β
[
u(x′′

s
, i′′

s
; θ) + γ − log(P̂ (i′′

s|x′′s)) + β · · ·
]]]

3Note that the distribution (x′, i′, ε′|x, i) can be factored, via the conditional independence as-

sumption, into (ε′|i′, x′)(i′|x′)(x′|x, i).
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where

• x′s ∼ Ĝ(·|x, i)

• i′s ∼ p̂(·|x′s), x′′s ∼ Ĝ(·|x′s, i′s)

• &etc.

In short, you simulate Ṽ (x, i; θ) by drawing S “sequences” of (it, xt) with a initial value

of (i, x), and computing the present-discounted utility correspond to each sequence.

Then the simulation estimate of Ṽ (x, i; θ) is obtained as the sample average.

Given an estimate of Ṽ (·, i; θ), you can get the predicted choice probabilities:

p̃(i = 1|x; θ) ≡
exp

(
Ṽ (x, i = 1; θ)

)
exp

(
Ṽ (x, i = 1; θ)

)
+ exp

(
Ṽ (x, i = 0; θ)

) (1)

and analogously for p̃(i = 0|x; θ). Note that the predicted choice probabilities are

different from p̂(i|x), which are the actual choice probabilities computed from the

actual data. The predicted choice probabilities depend on the parameters θ, whereas

p̂(i|x) depend solely on the data.

1.3 Estimation: match hats to tildes

One way to estimate θ is to minimize the distance between the predicted conditional

choice probabilities, and the actual conditional choice probabilities:

θ̂ = argminθ||p̂(i = 1|x)− p̃ (i = 1|x; θ) ||

where p denotes a vector of probabilities, at various values of x.

Another way to estimate θ is very similar to the Berry/BLP method. We can calculate

directly from the data.

δ̂x ≡ log p̂(i = 1|x)− log p̂(i = 0|x)

Given the logit assumption, from equation (1), we know that

log p̃(i = 1|x)− log p̃(i = 0|x) =
[
Ṽ (x, i = 1)− Ṽ (x, i = 0)

]
.
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Hence, by equating Ṽ (x, i = 1)− Ṽ (x, i = 0) to δ̂x, we obtain an alternative estimator

for θ:

θ̄ = argminθ||δ̂x −
[
Ṽ (x, i = 1; θ)− Ṽ (x, i = 0; θ)

]
||.

1.4 A further shortcut in the discrete state case

In this section, for convenience, we will use Y instead of i to denote the action.

For the case when the state variables X are discrete, it turns out that, given knowledge

of the CCP’s P (Y |X), solving for the value function is just equivalent to solving a

system of linear equations. This was pointed out in Pesendorfer and Schmidt-Dengler

(2008) and Aguirregabiria and Mira (2007). Specifically:

• Assume that choices Y and state variables X are all discrete (ie. finite-valued).

|X| is cardinality of state space X. Here X includes just the observed state

variables (not including the unobserved shocks ε)

• Per-period utilities:

u(Y,X, εY ; Θ) = ū(Y,X; Θ) + εY

where εY , for y = 1, . . . Y , are i.i.d. extreme value distributed with unit variance.

• Parameters Θ. The discount rate β is treated as known and fixed.

• Introduce some more specific notation. Define the integrated or ex-ante value

function (before ε observed, and hence before the action Y is chosen):4

W (X) = E[V (X, ε)|X].

Along the optimal dynamic path, at state X and optimal action Y , the contin-

uation utility is

ū(Y,X) + εY + β
∑
X′

P (X ′|X, Y )W (X ′).

4Similar to Rust’s EV (· · · ) function, but not the same. See appendix.
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This integrated value function satisfies a Bellman equation:

W (X) =
∑
Y

[P (Y |X) {ū(Y,X) + E(εY |Y,X)}] + β
∑
Y

∑
X′

P (Y |X)P (X ′|X, Y )W (X ′)

=
∑
Y

[P (Y |X) {ū(Y,X) + E(εY |Y,X)}] + β
∑
X′

P (X ′|X)W (X ′)

(2)

• To derive the above, start with “real” Bellman equation:

V (X, ε) = ū(Y ∗, X) +
∑
Y

εY 1(Y = Y ∗) + βEX′|X,YEε′|X′V (X ′, ε′)

= ū(Y ∗, X) +
∑
Y

εY 1(Y = Y ∗) + βEX′|X,YW (X ′)

⇒ W (X) = Eε|XV (X, ε) = EY ∗,ε|X

{
ū(Y ∗, X) +

∑
Y

εY 1(Y = Y ∗) + βEX′|X,YW (X ′)

}
= EY ∗|XEε|Y ∗,X {· · · }
= EY ∗|X

[
ū(Y ∗, X) + E[εY ∗|Y ∗, X] + βEX′|X,YW (X ′)

]
=
∑
Y

P (Y = Y ∗|X) [· · · ] .

(Note: in the 4th line above, we first condition on the optimal choice Y ∗, and

take expectation of ε conditional on Y ∗. The other way will not work.)

• In matrix notation, this is:

W̄ (Θ) =
∑

Y ∈(0,1)

P (Y ) ∗ [ū(Y ; Θ) + ε(Y )] + β · F · W̄ (Θ)

⇔W̄ (Θ) = (I − βF )−1

 ∑
Y ∈(0,1)

P (Y ) ∗ [ū(Y ; Θ) + ε(Y )]


(3)

where

– W̄ (Θ) is the vector (each element denotes a different value of X) for the

integrated value function at the parameter Θ

– ’*’ denotes elementwise multiplication
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– F is the |X|-dimensional square matrix with (i, j)-element equal to Pr(X ′ =

j|X = i).

– P (Y ) is the |X|-vector consisting of elements Pr(Y |X).

– ū(Y ) is the |X|-vector of per-period utilities ū(Y ;X).

– ε(Y ) is an |X|-vector where each element is E[εY |Y,X]. For the logit

assumptions, the closed-form is

E[εY |Y,X] = Euler’s constant− log(P (Y |X)).

Euler’s constant is 0.57721.

Based on this representation, P/S-D propose a class of “least-squares” estimators,

which are similar to HM-type estimators, except now we don’t need to “forward-

simulate” the value function. For instance:

• Let P̂ (Ȳ ) denote the estimated vector of conditional choice probabilities, and

F̂ be the estimated transition matrix. Both of these can be estimated directly

from the data.

• For each posited parameter value Θ, and given (F̂ , P̂ (Ȳ )) use equation (3) to

evaluate the integrated value function W̄ (X,Θ), and derive the vector P̃ (Ȳ ; Θ)

of implied choice probabilities at Θ, which has elements

P̃ (Y |X; Θ) =
exp

[
ū(Y,X; Θ) + EX′|X,YW (X ′; Θ)

]∑
Y exp

[
ū(Y,X; Θ) + EX′|X,YW (X ′; Θ)

] .
• Hence, Θ can be estimated as the parameter value minimizing the norm ||P̂ (Ȳ )−
P̃ (Y ; Θ)||.

2 Semiparametric identification of DDC Models

We can also use the Hotz-Miller estimation scheme as a basis for an argument re-

garding the identification of the underlying DDC model. In Markovian DDC models,

without unobserved state variables, the Hotz-Miller routine exploits the fact that the
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Markov probabilities x′, d′|x, d are identiified directly from the data, which can be

factorized into

f(x′, d′|x, d) = f(d′|x′)︸ ︷︷ ︸
CCP

· f(x′|x, d)︸ ︷︷ ︸
state law of motion

.
(4)

In this section, we argue that once these “reduced form” components of the model

are identified, the remaining parts of the models – particularly, the per-period utility

functions – can be identified without any further parametric assumptions. These

arguments are drawn from Magnac and Thesmar (2002) and Bajari, Chernozhukov,

Hong, and Nekipelov (2007).

We make the following assumptions, which are standard in this literature:

1. Agents are optimizing in an infinite-horizon, stationary setting. Therefore, in

the rest of this section, we use primes ′’s to denote next-period values.

2. Actions D are chosen from the set D = {0, 1, . . . , K}.

3. The state variables are X.

4. The per-period utility from taking action d ∈ D in period t is:

ud(Xt) + εd,t, ∀d ∈ D.

The εd,t’s are utility shocks which are independent of Xt, and distributed i.i.d

with known distribution F (ε) across periods t and actions d. Let ~εt ≡ (ε0,1, ε1,t, . . . , εK,t).

5. From the data, the “conditional choice probabilities” CCP’s

pd(X) ≡ Prob(D = d|X),

and the Markov transition kernel for X, denoted p(X ′|D,X), are identified.

6. u0(X), the per-period utility from D = 0, is normalized to zero, for all X.

7. β, the discount factor, is known.5

5Magnac and Thesmar (2002) discuss the possibility of identifying β via exclusion restrictions,

but we do not pursue that here.
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Following the arguments in Magnac and Thesmar (2002) and Bajari, Chernozhukov,

Hong, and Nekipelov (2007), we will show the nonparametric identification of ud(·), d =

1, . . . , K, the per-period utility functions for all actions except D = 0.

The Bellman equation for this dynamic optimization problem is

V (X,~ε) = max
d∈D

(
ud(X) + εd + βEX′,~ε′|D,XV (X ′,~ε′)

)
where V (X,~ε) denotes the value function. We define the choice-specific value function

as

Vd(X) ≡ ud(X) + βEX′,~ε′|D,XV (X ′,~ε′).

Given these definitions, an agent’s optimal choice when the state is X is given by

y∗(X) = argmaxy∈D (Vd(X) + εd) .

Hotz and Miller (1993) and Magnac and Thesmar (2002) show that in this setting,

there is a known one-to-one mapping, q(X) : RK → RK , which maps the K-vector of

choice probabilities (p1(X), . . . , pK(X)) to the K-vector (∆1(X), . . . ,∆K(X)), where

∆d(X) denotes the difference in choice-specific value functions

∆d(X) ≡ Vd(X)− V0(X).

Let the i-th element of q(p1(X), . . . , pK(X)), denoted qi(X), be equal to ∆i(X). The

known mapping q derives just from F (ε), the known distribution of the utility shocks.

Hence, since the choice probabilities can be identified from the data, and the mapping

q is known, the value function differences ∆1(X), . . . ,∆K(X) is also known.

Next, we note that the choice-specific value function also satisfies a Bellman-like

equation:

Vd(X) = ud(X) + βEX′|X,D
[
E~ε′ max

d′∈D
(Vd′(X

′) + ε′d′)

]
= ud(X) + βEX′|X,D

{
V0(X ′) +

[
E~ε′ max

d′∈D
(∆d′(X

′) + ε′d′)

]}
= ud(X) + βEX′|X,D [H(∆1(X ′), . . . ,∆K(X ′)) + V0(X ′)]

(5)
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where H(· · · ) denotes McFadden’s “social surplus” function, for random utility mod-

els (cf. Rust (1994, pp. 3104ff)). Like the q mapping, H is a known function, which

depends just on F (ε), the known distribution of the utility shocks.

Using the assumption that u0(X) = 0, ∀X, the Bellman equation for V0(X) is

V0(X) = βEX′|X,D [H(∆1(X ′), . . . ,∆K(X ′)) + V0(X ′)] . (6)

In this equation, everything is known (including, importantly, the distribution of

X ′|X,D), except the V0(·) function. Hence, by iterating over Eq. (6), we can recover

the V0(X) function. Once V0(·) is known, the other choice-specific value functions

can be recovered as

Vd(X) = ∆d(X) + V0(X), ∀y ∈ D, ∀X.

Finally, the per-period utility functions ud(X) can be recovered from the choice-

specific value functions as

ud(X) = Vd(X)− βEX′|X,D [H(∆1(X ′), . . . ,∆K(X ′)) + V0(X ′)] , ∀y ∈ D, ∀X,

where everything on the right-hand side is known.

Remark: For the case where F (ε) is the Type 1 Extreme Value distribution, the

social surplus function is

H(∆1(X), . . . ,∆K(X)) = log

[
1 +

K∑
d=1

exp(∆d(X))

]

and the mapping q is such that

qd(X) = ∆d(X) = log(pd(X))− log(p0(X)), ∀d = 1, . . . K,

where p0(X) ≡ 1−
∑K

d=1 pd(X). �

Remark: The above argument also holds if εd is not independent of εd′ , and also

if the joint distribution of (ε0, ε1, . . . , εK) is explicitly dependent on X. However, in

that case, the mappings qX and HX will depend explicitly on X, and typically not be

available in closed form, as in the multinomial logit case. For this reason, practically

all applications of this machinery maintain the multinomial logit assumption.
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A A result for multinomial logit model

Show: for the multinomial logit case, we have E[εj|choice j is chosen] = γ − log(Pj)

where γ is Euler’s constant (0.577...) and Pr(d|x) is the choice probability of action

j.

This closed-form expression has been used much in the literature on estimating dy-

namic models: eg. Eq. (12) in Aguirregabiria and Mira (2007) or Eq. (2.22) in Hotz,

Miller, Sanders, and Smith (1994).

Use the fact: for a univariate extreme value variate with parameter a, CDF F (ε) =

exp(−ae−ε), and density f(ε) = exp(−ae−ε)(ae−ε), we have

E(ε) = log a+ γ, γ = 0.577..

Also use McFadden’s (1978) results for generalized extreme value distribution:

• For a function G(eV0 , . . . , eVJ ), we define the generalized extreme value distri-

bution of (ε0, . . . , εj) with joint CDF F (ε0, . . . , εJ) = exp {−G(eε0 , . . . , eεJ )}.

• G(. . .) is a homogeneous-degree-1 function, with nonnegative odd partial deriva-

tives and nonpositive even partial derivatives.

• Theorem 1: For a random utility model where agent chooses according to j =

argmaxj′∈{0,1,...,J}Uj = Vj + εj, the choice probabilities are given by

P (j) =

∫
−∞

Fj(Vj + εj − V0, Vj + εj − V1, . . . , Vj + εj − VJ)dεj

=
eVjGj(e

V0 , . . . , eVJ )

G(eV0 , . . . , eVJ )

• Corollary: Total expected surplus is given by

Ū = Emax
j

(Vj + εj) = γ + log(G(eV0 , . . . , eVJ ))

and choice probabilities by Pj = ∂Ū
∂Vj

. For this reason, G(. . .) is called the “social

surplus function”
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In what follows, we use McFadden’s shorthand of < Vj′ > to denote a J + 1 vector

with j′ − th component equal to Vj′−1 for j′ = 1, . . . , J .

Imitating the proof for the corollary above, we can derive that (defining a = G(<

eVj′ >))

E(Vj + εj|j is chosen)

=
1

Pj

∫ +∞

−∞
(Vj + εj)Fj(< Vj + εj − Vj′ >)dεj

=
1

Pj

∫ +∞

−∞
(Vj + εj) exp(−G(< e−Vj−εj+Vj′ >))Gj(< e−Vj−εj+Vj′ >)e−εjdεj

=
a

eVjGj(< eVj′ >)

∫ +∞

−∞
(Vj + εj) exp(−ae−Vj−εj)Gj(< eVj′ >)e−εjdεj (by props. of G)

=

∫ +∞

−∞
(Vj + εj) exp(−aeVj−εj)ae−Vje−εjdεj

=

∫ +∞

−∞
w exp(−ae−w)aewdw (Vj + εj → w)

= log(a) + γ.

For the multinomial logit model, we have G(< eVj′ >) =
∑

j′ e
Vj′ . For this case

Pj = exp(Vj)/G(< eVj′ >), and Gj(· · · ) = 1 for all j. Then

E[εj|j is chosen] = log(a) + γ − (Vj − V0)− V0

= log(G(< eVj′ >)) + γ − log(Pj) + log(P0)− V0 (using Vj − V0 = log(Pj/P0))

= log(G(< eVj′ >)) + γ − log(Pj) + V0 − log(G(< eVj′ >))− V0

= γ − log(Pj)

B Relations between different value function notions

Here we delve into the differences between the “real” value function V (x, ε), the

EV (x, y) function from Rust (1987), and the integrated or ex-ante value function

W (x) from Aguirregabiria and Mira (2007) and Pesendorfer and Schmidt-Dengler

(2008).

By definition, Rust’s EV function is defined as:

EV (x, y) = Ex′,ε′|x,yV (x′, ε′).
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By definition, the integrated value function is defined as

W (x) = E[V (X, ε)|X = x].

By iterated expectations,

EV (x, y) = Ex′,ε′|x,yV (x′, ε′)

= Ex′|x,yEε′|x′V (x′, ε′)

= Ex′|x,yW (x′)

given the relationship between the EV and integrated value functions.

Hence, the “choice-specific value function” (without the ε) is defined as:

v̄(x, y) ≡ u(x, y) + βEx′,ε′|x,yV (x′, ε′)

= u(x, y) + βEV (x, y)

= u(x, y) + βEx′|x,yW (x′).

Also note

V (x, ε) = max
y
{v̄(x, y) + εy}

⇒ W (x) = E
[
max
y
{v̄(x, y) + εy} |x

]
which corresponds to the social surplus function of this dynamic discrete choice model.
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