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Single-agent dynamic optimization models

In these lecture notes we consider specification and estimation of dynamic optimiza-

tion models. Focus on single-agent models.

1 Rust (1987)

Rust (1987) is one of the first papers in this literature. Model is quite simple, but

empirical framework introduced in this paper for dynamic discrete-choice (DDC)

models is still widely applied.

Agent is Harold Zurcher, manager of bus depot in Madison, Wisconsin. Each week,

HZ must decide whether to replace the bus engine, or keep it running for another week.

This engine replacement problem is an example of an optimal stopping problem, which

features the usual tradeoff: (i) there are large fixed costs associated with “stopping”

(replacing the engine), but new engine has lower associated future maintenance costs;

(ii) by not replacing the engine, you avoid the fixed replacement costs, but suffer

higher future maintenance costs.

1.1 Behavioral Model

At the end of each week t, HZ decides whether or not to replace engine. Control

variable defined as:

it =

{
1 if HZ replaces

0 otherwise.

For simplicity. we describe the case where there is only one bus (in the paper, buses

are treated as independent entities).

HZ chooses the (infinite) sequence {i1, i2, i3, . . . , it, it+1, . . .} to maximize discounted

expected utility stream:

max
{i1,i2,i3,...,it,it+1,...}

E
∞∑
t=1

βt−1u (xt, εt, it; θ) (1)

where
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• The state variables of this problem are:

1. xt: the mileage. Both HZ and the econometrician observe this, so we call

this the “observed state variable”

2. εt: the utility shocks. Econometrician does not observe this, so we call it

the “unobserved state variable”

• xt is the mileage of the bus at the end of week t. Assume that evolution of

mileage is stochastic (from HZ’s point of view) and follows

xt+1

{
∼ G(x′|xt) if it = 0 (don’t replace engine in period t)

∼ G(x′|0) if it = 1: once replaced, mileage gets reset to zero
(2)

and G(x′|x) is the conditional probability distribution of next period’s mileage

x′ given that current mileage is x. HZ knows G; econometrician knows the form

of G, up to a vector of parameters which are estimated.1

• εt denotes shocks in period t, which affect HZ’s choice of whether to replace the

engine. These are the “structural errors” of the model (they are observed by

HZ, but not by us), and we will discuss them in more detail below.

Define value function:

V (xt, εt) = max
iτ , τ=t+1,t+2,...

Et

[
∞∑

τ=t+1

βτ−tu (xt, εt, it; θ) |xt

]

where maximum is over all possible sequences of {it+1, it+2, . . .}. Note that we have

imposed stationarity, so that the value function V (·) is a function of t only indirectly,

through the value that the state variable x takes during period t.2

1Since mileage evolves randomly, this implies that even given a sequence of replacement choices

{i1, i2, i3, . . . , it, it+1, . . .}, the corresponding sequence of mileages {x1, x2, x3, . . . , xt, xt+1, . . .} is still

random. The expectation in Eq. (1) is over this stochastic sequence of mileages and over the shocks

{ε1, ε2, . . .}.
2An important distinction between empirical papers with dynamic optimization models is whether

agents have infinite-horizon, or finite-horizon. Stationarity (or time homogeneity) is assumed for

infinite-horizon problems, and they are solved using value function iteration. Finite-horizon problems

are non-stationary, and solved by backward induction starting from the final period.
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Using the Bellman equation, we can break down the DO problem into an (infinite)

sequence of single-period decisions:

it = i∗(xt, εt; θ) = argmaxi
{
u(xt, εt, i; θ) + βEx′,ε′|xt,εt,itV (x′, ε′)

}
where the value function is

V (x, ε) = max
i=1,0

{
u(x, ε, i; θ) + βEx′,ε′|xt,εt,itV (x′, ε′)

}
= max

{
u(x, ε, 0; θ) + βEx′,ε′|xt,εt,it=0V (x′, ε′), u(x, ε, 1; θ) + βEx′,ε′|0,εt,it=1V (x′, ε′).

}
= max

{
Ṽ (x, ε, 1), Ṽ (x, ε, 0)

}
.

(3)

In the above, we define the choice-specific value function

Ṽ (x, ε, i) =

{
u(x, ε, 1; θ) + βEx′,ε′|x=0,ε,i=1V (x′, ε′) if i = 1

u(x, ε, 0; θ) + βEx′,ε′|x,ε,i=0V (x′, ε′) if i = 0.

We make the following parametric assumptions on utility flow:

u(xt, εt, i; θ) = −c ((1− it) ∗ xt; θ)− i ∗RC + εit

where

• c(· · · ) is the maintenance cost function, which is presumably increasing in x

(higher x means higher costs)

• RC denotes the “lumpy” fixed costs of adjustment. The presence of these costs

implies that HZ won’t want to replace the engine every period.

• εit, i = 0, 1 are structural errors, which represents factors which affect HZ’s

replacement choice it in period t, but are unobserved by the econometrician.

Define εt ≡ (ε0t, ε1t).

As Rust remarks (bottom, pg. 1008), you need this in order to generate a pos-

itive likelihood for your observed data. Without these ε’s, we observe as much

as HZ does, and it = i∗(xt; θ), so that replacement decision should be perfectly

explained by mileage. Hence, model will not be able to explain situations where
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there are two periods with identical mileage, but in one period HZ replaced, and

in the other HZ doesn’t replace.

(Tension between this empirical practice and “falsifiability: of model)

As remarked earlier, these assumption imply a very simple type of optimal decision

rule i∗(x, ε; θ): in any period t, you replace when xt ≥ x∗(εt), where x∗(εt) is some

optimal cutoff mileage level, which depends on the value of the shocks εt.

Parameters to be estimated are:

1. parameters of maintenance cost function c(· · · );

2. replacement cost RC;

3. parameters of mileage transition function G(x′|x).

Remark: Distinguishing myopic from forward-looking behavior. In these

models, the discount factor β is typically not estimated. Essentially, the time series

data on {it, xt} could be equally well explained by a myopic model, which posits that

it = argmaxi∈{0,1} {u(xt, εt, i)} ,

or a forward-looking model, which posits that

it = argmaxi∈{0,1}

{
Ṽ (xt, εt, i)

}
.

In both models, the choice it depends just on the current state variables xt, εt. Indeed,

Magnac and Thesmar (2002) shows that in general, DDC models are nonparamet-

rically underidentified, without knowledge of β and F (ε), the distribution of the

ε shocks. (Below, we show how knowledge of β and F , along with an additional

normalization, permits nonparametric identification of the utility functions in this

model.)

Intuitively, in this model, it is difficult to identify β apart from fixed costs. In this

model, if HZ were myopic (ie. β close to zero) and replacement costs RC were low, his

decisions may look similar as when he were forward-looking (ie. β close to 1) and RC
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were large. Reduced-form tests for forward-looking behavior exploit scenarios in which

some variables which affect future utility are known in period t: consumers are deemed

forward-looking if their period t decisions depends on these variables. Examples:

Chevalier and Goolsbee (2009) examine whether students’ choices of purchasing a

textbook now depend on the possibility that a new edition will be released soon.

Becker, Grossman, and Murphy (1994) argue that cigarette addiction is “rational”

by showing that cigarette consumption is response to permanent future changes in

cigarette prices.

1.2 Econometric Model

Data: observe {it, xt} , t = 1, . . . , T for 62 buses. Treat buses as homogeneous and

independent (ie. replacement decision on bus j is not affected by replacement decision

on bus j′).

Rust makes the following conditional independence assumption, on the Markovian

transition probabilities in the Bellman equation above:

Assumption 1 (xt,~εt) is a stationary controlled first-order Markov process, with

transition

p(x′, ε′|x, ε, i) = p(ε′|x′, x, ε, i) · p(x′|x, e, i)
= p(ε′|x′) · p(x′|x, i).

(4)

The first line is just factoring the joint density into a conditional times a marginal.

The second line shows the simplifications from Rust’s assumptions. Namely, two

types of conditional independence: (i) given x, ε’s are independent over time; and (ii)

conditional on x and i, x′ is independent of ε.
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Likelihood function for a single bus:

l (x1, . . . , xT , i1, . . . , iT |x0, i0; θ)

=
T∏
t=1

Prob (it, xt|x0, i0, . . . , xt−1, it−1; θ)

=
T∏
t=1

Prob (it, xt|xt−1, it−1; θ)

=
T∏
t=1

Prob (it|xt; θ)× Prob (xt|xt−1, it−1; θ3) .

(5)

Both the third and fourth lines arise from the conditional independence assumption.

Note that, in the dynamic optimization problem, the optimal choice of it depends

on the state variables (xt, εt). Hence the third line (implying that {xt, it} evolves as

1-order Markov) relies on the conditional serial independence of εt. The last equality

also arises from this conditional serial independence assumption.

Hence, the log likelihood is additively separable in the two components:

log l =
T∑
t=1

logProb (it|xt; θ) +
T∑
t=1

logProb (xt|xt−1, it−1; θ3) .

Here θ3 ⊂ θ denotes the subset of parameters which enter G, the transition probability

function for mileage. Because θ3 ⊂ θ, we can maximize the likelihood function above

in two steps.

First step: Estimate θ3, the parameters of the Markov transition probabilities for

mileage. We assume a discrete distribution for mileage x, taking K distinct and

equally-spaced values
{
x[1], x[2], . . . , x[K]

}
, in increasing order, where x[k′] − x[k] =

∆ · (k′− k), where ∆ is a mileage increment (Rust considers ∆ = 5000). Also assume

that given the current state xt = x[k], the mileage in the next period can more up

to at most x[k+J ]. (When it = 1¡ so that engine is replaced, we reset xt = 0 = x[0].)

Then the mileage transition probabilities can be expressed as:

P (x[k+j]|x[k], d = 0) =

{
pj if 0 ≤ j ≤ J

0 otherwise
(6)

so that θ3 ≡ {p0, p1, . . . , pJ}, with 0 < p0, . . . , pJ < 1 and
∑J

j=1 pj = 1.
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This first step can be executed separately from the substantial second step. θ3 esti-

mated just by empirical frequencies: p̂j = freq {xt+1 − xt = ∆ · j}, for all 0 ≤ j ≤ J .

Second step: Estimate the remaining parameters θ\θ3, parameters of maintenance

cost function c(· · · ) and engine replacement costs.

Here, we make a further assumption:

Assumption 2 The ε’s are distributed i.i.d. (across choices and periods), according

to the Type I extreme value distribution. So this implies that in Eq. (4) above,

p(ε′|x′) = p(ε′), for all x′.

Expand the expression for Prob(it = 1|xt; θ) equals

Prob
{
−c(0; θ)−RC + ε1t + βEx′,ε′|0V (x′, ε′) > −c(xt; θ) + ε0t + βEx′,ε′|xtV (x′, ε′)

}
=Prob

{
ε1t − ε0t > c(0; θ)− c(xt; θ) + β

[
Ex′,ε′|xtV (x, ε)− Ex′,ε′|0V (x′, ε′)

]
+RC

}
Because of the logit assumptions on εt, the replacement probability simplifies to a

multinomial logit-like expression:

=
exp

(
−c(0; θ)−RC + βEx′,ε′|xt=0V (x′, ε′)

)
exp

(
−c(0; θ)−RC + βEx′,ε′|xt=0V (x′, ε′)

)
+ exp

(
−c(xt; θ) + βEx′,ε′|xtV (x′, ε′)

) .
This is called a “dynamic logit” model, in the literature.

Defining ū(x, i; θ) ≡ u(x, ε, i; θ)− εi the choice probability takes the form

Prob (it|xt; θ) =
exp

(
ū(xt, it, θ) + βEx′,ε′|xt,itV (x′, ε′)

)∑
i=0,1 exp

(
ū(xt, i, θ) + βEx′,ε′|xt,iV (x′, ε′)

) . (7)

1.2.1 Estimation method for second step: Nested fixed-point algorithm

The second-step of the estimation procedures is via a “nested fixed point algorithm”.

Outer loop: search over different parameter values θ̂.

Inner loop: For θ̂, we need to compute the value function V (x, ε; θ̂). After V (x, ε; θ̂)

is obtained, we can compute the LL fxn in Eq. (7).
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1.2.2 Computational details for inner loop

Compute value function V (x, ε; θ̂) by iterating over Bellman’s equation (3).

A clever and computationally convenient feature in Rust’s paper is that he iterates

over the expected value function EV (x, i) ≡ Ex′,ε′|x,iV (x′, ε′; θ). The reason for this is

that you avoid having to calculate the value function at values of ε0 and ε1, which are

additional state variables. He iterates over the following equation (which is Eq. 4.14

in his paper):

EV (x, i) =

∫
y

log

 ∑
j∈C(y)

exp [ū(y, j; θ) + βEV (y, j)]

 p(dy|x, i) (8)

Somewhat awkward notation: here “EV” denotes a function. Here x, i denotes the

previous period’s mileage and replacement choice, and y, j denote the current period’s

mileage and choice (as will be clear below).

This equation can be derived from Bellman’s equation (3):

V (y, ε; θ) = max
j∈0,1

[ū(y, j; θ) + ε+ βEV (y, j)]

⇒ Ey,ε [V (y, ε; θ) | x, i] ≡ EV (x, i; θ) =Ey,ε|x,i

{
max
j∈0,1

[ū(y, j; θ) + ε+ βEV (y, j)]

}
=Ey|x,iEε|y,x,i

{
max
j∈0,1

[ū(y, j; θ) + ε+ βEV (y, j)]

}
=Ey|x,i log

{∑
j=0,1

exp [ū(y, j; θ) + βEV (y, j)]

}

=

∫
y

log

{∑
j=0,1

exp [ū(y, j; θ) + βEV (y, j)]

}
p(dy|x, i).

The next-to-last equality uses the closed-form expression for the expectation of the

maximum, for extreme-value variates.3

Once the EV (x, i; θ) function is computed for θ, the choice probabilities p(it|xt) can

be constructed as
exp (ū(xt, it; θ) + βEV (xt, it; θ))∑
i=0,1 exp (ū(xt, i; θ) + βEV (xt, i; θ))

.

3See Chiong, Galichon, and Shum (2013) for the most general treatment of this.
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The value iteration procedure: The expected value function EV (· · · ; θ) will

be computed for each value of the parameters θ. The computational procedure is

iterative.

Let τ index the iterations. Let EV τ (x, i) denote the expected value function during

the τ -th iteration. (We suppress the functional dependence of EV on θ for conve-

nience.) Here Rust assumes that mileage is discrete- (finite-) valued, and takes K

values, each spaced 5000 miles apart, consistently with earlier modeling of mileage

transition function in Eq. (6). Let the values of the state variable x be discretized

into a grid of points, which we denote ~r.

Because of this assumption that x is discrete, the EV (x, i) function is now finite

dimensional, having 2×K elements.

• τ = 0: Start from an initial guess of the expected value function EV (x, i).

Common way is to start with EV (x, i) = 0, for all x ∈ ~r, and i = 0, 1.

• τ = 1: Use Eq. (8) and EV 0(x; θ) to calculate, at each x ∈ ~r, and i ∈ {0, 1}.

EV 1(x, i) =
∑
y∈~r

log

 ∑
j∈C(y)

exp
[
ū(y, j; θ) + βEV 0(y, j)

] p(y|x, i)

where the transition probabilities p(y|x, i) are given by Eq. (6) above.

Now check: is EV 1(x, i) close to EV 0(x, i)? Check whether

supx,i|EV 1(x, i)− EV 0(x, i)| < η

where η is some very small number (eg. 0.0001). If so, then you are done. If

not, then go to next iteration τ = 2.
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