Modus operandi of empirical (data) work:

- We observe bids b_1, \ldots, b_n, and we want to recover valuations v_1, \ldots, v_n.

- Why? Analogously to demand estimation, we can evaluate the “market power” of bidders, as measured by the margin $v - p$.

 Could be interesting to examine: how fast does margin decrease as n (number of bidders) increases?

- Useful for the optimal design of auctions:
 1. What is auction format which would maximize seller revenue?
 2. What value for reserve price would maximize seller revenue?

- Testing between CV and PV models

 Very different behavioral implications

1 Nonparametric Identification and Estimation in IPV First-price Auction Model

- Main reference: Guerre, Perrigne, and Vuong (2000)

- Recall first-order condition for equilibrium bid (general affiliated values case):

 $$b'(x) = (v(x, x) - b(x)) \cdot \frac{f_{y|x}(x|x)}{F_{y|x}(x|x)};$$

 where $y_i \equiv \max_{j \neq i} x_i$ (highest among rivals’ signals) and $b(\cdot)$ denotes the equilibrium bidding strategy.

- In IPV case: $V_i = X_i$, so that

 $$v(x, x) = x$$

 $$F_{y|x}(x|x) = F(x)^{n-1}$$

 $$f_{y|x}(x|x) = \frac{\partial}{\partial x} F(x)^{n-1} = (n-1) F(x)^{n-2} f(x).$$
Hence, first-order condition becomes

$$b'(x) = (x - b(x)) \cdot (n - 1) \frac{F(x)^{n-2} f(x)}{F(x)^{n-1}}$$

$$= (x - b(x)) \cdot (n - 1) \frac{f(x)}{F(x)}.$$ \hspace{1cm} (2)

- Now, note that because equilibrium bidding function $b(x)$ is just a monotone increasing function of the valuation x. Hence, for $b_i = b(x_i)$:
 - The cumulative distribution function of the bids is:
 $$G(b_i) = P(b \leq b_i) = P(x \leq x_i) = F(x_i)$$ \hspace{1cm} (3)
 - Correspondingly, the bid density function can be obtained by differentiation:
 $$g(b_i) = \frac{\partial G(b_i)}{\partial b_i} = \frac{\partial F(x_i)}{\partial x_i} \cdot \frac{\partial x_i}{\partial b_i} = f(x_i) \cdot \frac{\partial b_i^{-1}(b_i)}{\partial b_i} = f(x_i) \cdot 1/b_i'(x_i).$$ \hspace{1cm} (4)

Hence, substituting the above into Eq. (2):

$$\frac{1}{g(b_i)} = (n - 1) \frac{x_i - b_i}{G(b_i)}$$

$$\Leftrightarrow x_i = b_i + \frac{G(b_i)}{(n - 1)g(b_i)}.$$ \hspace{1cm} (5)

Everything on the RHS of the preceding equation is observed: the equilibrium bid CDF G and density g can be estimated directly from the data nonparametrically. Assuming a dataset consisting of T n-bidder auctions:

$$\hat{g}(b) \approx \frac{1}{T \cdot n} \sum_{t=1}^{T} \sum_{i=1}^{n} \frac{1}{h} K \left(\frac{b - b_{it}}{h} \right)$$

$$\hat{G}(b) \approx \frac{1}{T \cdot n} \sum_{t=1}^{T} \sum_{i=1}^{n} 1(b_{it} \leq b).$$ \hspace{1cm} (6)

The first is a kernel density estimate of bid density. The second is the empirical distribution function (EDF).

- In the above, K is a “kernel function”. A kernel function is a function satisfying the following conditions:
1. It is a probability density function, ie: \(\int_{-\infty}^{\infty} K(d) du = 1 \), and \(K(u) \geq 0 \) for all \(u \).

2. It is symmetric around zero: \(K(u) = K(-u) \).

3. \(h \) is bandwidth: describe below

4. Examples:
 - (a) \(K(u) = \phi(u) \) (standard normal density function);
 - (b) \(K(u) = \frac{1}{2} \mathbf{1}(|u| \leq 1) \) (uniform kernel);
 - (c) \(K(u) = \frac{3}{4}(1 - u^2) \mathbf{1}(|u| \leq 1) \) (Epanechnikov kernel)

 • To get some intuition for the kernel estimate of \(\hat{g}(b) \), consider the histogram
 \[
 h(b) = \frac{1}{Tn} \sum_{t} \sum_i 1(b_{it} \in [b - \epsilon, b + \epsilon])
 \]
 for some small \(\epsilon > 0 \). The histogram at \(b \), \(h(b) \) is the frequency with which the observed bids land within an \(\epsilon \)-neighborhood of \(b \).

 • In comparison, the kernel estimate of \(\hat{g}(b) \) replaces \(1(b_{it} \in [b - \epsilon, b + \epsilon]) \) with \(\frac{1}{h} K \left(\frac{b - b_{it}}{h} \right) \).
 This is:
 - always \(\geq 0 \)
 - takes large values for \(b_{it} \) close to \(b \); small values (or zero) for \(b_{it} \) far from \(b \)
 - takes values in \(\mathbb{R}^+ \) (can be much larger than 1)
 - \(h \) is bandwidth, which blows up \(\frac{1}{h} K \left(\frac{b - b_{it}}{h} \right) \): when it is smaller, then this quantity becomes larger.

 Think of \(h \) as measuring the “neighborhood size” (like \(\epsilon \) in the histogram). When \(T \to \infty \), then we can make \(h \) smaller and smaller.

 Bias/variance tradeoff.

 – Roughly speaking, then, \(\hat{g}(b) \) is a “smoothed” histogram,

 • For \(\hat{G}(b) \), recall definition of the CDF:
 \[
 G(\hat{b}) = Pr(b \leq \hat{b}).
 \]
 The EDF measures these probabilities by the (within-sample) frequency of the events.

 • Hence, the IPV first-price auction model is nonparametrically identified. For each observed bid \(b_{it} \), the corresponding valuation \(x_{it} = b^{-1}(b_{it}) \) can be recovered as:
 \[
 \hat{x}_{it} = b_{it} + \frac{\hat{G}(b_{it})}{(n - 1)\hat{g}(b_{it})}.
 \] (7)
Hence, GPV recommend a two-step approach to estimating the valuation distribution \(f(x) \):

1. In first step, estimate \(G(b) \) and \(g(b) \) nonparametrically, using Eqs. (6).
2. In second step, estimate the density \(f(x) \) and CDF \(F(x) \) of valuations by using kernel density estimator of recovered valuations:

\[
\hat{f}(x) \approx \frac{1}{T \cdot n} \sum_{t=1}^{T} \sum_{i=1}^{n} \frac{1}{h} K \left(\frac{x - \hat{x}_{it}}{h} \right).
\]

\[
\hat{F}(x) \approx \frac{1}{T \cdot n} \sum_{t=1}^{T} \sum_{i=1}^{n} \mathbf{1} (\hat{x}_{it} \leq x).
\] \((8) \)

1.1 Optimal reserve price

With knowledge of \(f(x) \) and \(F(x) \), you can compute the optimal reserve price:

\[
\hat{r} : \hat{r} - \frac{1 - \hat{F}(\hat{r})}{\hat{f}(\hat{r})} = 0.
\]

1.2 Only winning bids observed

As a simple extension, we see that identification continues to hold, even when only the highest-bid in each auction is observed. Specifically, if only \(b_{n,n} \equiv \max(b_1, \ldots, b_n) \) is observed, we can estimate \(G_{n,n} \), the CDF of the maximum bid, from the data. Note that the relationship between the CDF of the maximum bid and the marginal CDF of an equilibrium bid is

\[
G_{n,n}(b) = G(b)^n
\]

implying that \(G(b) \) can be recovered from knowledge of \(G_{n,n}(b) \). Once \(G(b) \) is recovered, the corresponding density \(g(b) \) can also be recovered, and we could solve Eq. (7) for every \(b \) to obtain the inverse bid function.

2 Affiliated values models

Can this methodology be extended to affiliated values models (including common value models)?
To prepare what follows, we introduce a subscript (so we index distributions according to the number of bidders in the auction).

Go back to first order condition for this model is: for bidder i

$$b'(x,n) = (v(x,x,n) - b(x,n)) \cdot \frac{f_{y_i|x,n}(x|x)}{F_{y_i|x,n}(x|x)};$$

where $y_i \equiv \max_{j \neq i} \{x_1, \ldots, x_n\}$, and $v(x,x,n) = E[V_i|X_i = x, Y_i = x]$.

As before, because of the monotonicity of the bidding strategy $b(x,n)$ in x, we can exploit the following change of variable formulas:

- $G_{b^*|b,n}(b|b) = F_{y|x,n}(x|x)$
- $g_{b^*|b,n}(b|b) = f_{y|x,n}(x|x) \cdot 1/b'(x)$

where b^* denotes (for a given bidder), the highest bid submitted by this bidder’s rivals: for a given bidder i, $b^*_i = \max_{j \neq i} b_j$.

Hence, by considering some bid $b = b(x,n)$, and substituting the above into the first-order condition, we obtain:

$$v(x,x,n) = b + \frac{G_{b^*|b,n}(b|b,n)}{g_{b^*|b,n}(b|b,n)}. \quad (9)$$

Procedure similar to GPV can be used here to recover, for each bid b_i, the corresponding quantity $G_{b_i|b,n}(b|b,n) / g_{b_i|b,n}(b|b,n)$ (see below).

That is, for a given bid b, we can recover the corresponding $v(x,x,n)$. We cannot recover the signal x which caused this bidder to submit a bid equal to $b = b(x,n)$, but we can recover the “expected valuation conditional on winning”.

But it turns out this is enough for determining whether the bids came from a common value or private value environment.

2.1 Testing between CV and PV

Recall the winner’s curse: it implies that $v(x,x,n)$ is invariant to n for all x in a PV model but strictly decreasing in n for all x in a CV model.
In Haile, Hong, and Shum (2003), we use this intuition to develop a test for CV:
\[H_0 \text{ (PV)} : E [v(X, X; n)] = E [v(X, X; n + 1)] = \cdots = E [v(X, X; \bar{n})] \]
\[H_1 \text{ (CV)} : E [v(X, X; n)] > E [v(X, X; n + 1)] > \cdots > E [v(X, X; \bar{n})] \]

2.2 Technical details

Recall the fundamental probability laws,
\[g_{b^*, b, n}(b, b) = g_{b^*, b, n}(b|b) \cdot g_n(b) \]
where \(g_n(b) \) denotes the marginal density of bids. Then the fraction in the key equation (9) is equivalent to
\[\frac{G_n(b; b)}{g_n(b; b)} = \frac{G_n(b|b)}{g_n(b|b)}. \]

(10)

Li, Perrigne, and Vuong (2000) suggest kernel-based nonparametric estimates for \(g_n(b; b) \) and \(G_n(b; b) \) where
\[G_n(b; b) \equiv g_n(b|b) g_n(b) = \frac{\partial}{\partial b} \Pr(B_{it}^* \leq m, B_{it} \leq b)_{|m=b} \]
and
\[g_n(b; b) \equiv g_n(b|b) g_n(b) = \frac{\partial^2}{\partial m \partial b} \Pr(B_{it}^* \leq m, B_{it} \leq b)_{|m=b} \]
and \(g_n(\cdot) \) is the marginal density of bids in equilibrium. The kernel-based estimators are:
\[\hat{G}_n(b; b) = \frac{1}{T_n \times h \times n} \sum_{t=1}^{T} \sum_{i=1}^{n} K \left(\frac{b - b_{it}}{h} \right) 1(b_{it}^* < b, n_t = n) \]
\[\hat{g}_n(b; b) = \frac{1}{T_n \times h^2 \times n} \sum_{t=1}^{T} \sum_{i=1}^{n} 1(n_t = n) K \left(\frac{b - b_{it}}{h} \right) K \left(\frac{b - b_{it}^*}{h} \right). \]

(11)

Here, as above, \(h \) is a bandwidth and \(K(\cdot) \) is a kernel function.

Hence, by evaluating \(\hat{G}_n(\cdot, \cdot) \) and \(\hat{g}_n(\cdot, \cdot) \) at each observed bid \(b_{it} \), we can construct a pseudo-sample of estimates of
\[\hat{v}_{it} = b_{it} + \frac{\hat{G}_n(b_{it}; b_{it})}{\hat{g}_n(b_{it}; b_{it})}, \]
where each \(v_{it} = E[V_i|X_i = x_{it}, Y_i = x_{it}] \), the expected value of winning for a bidder who submitted the bid \(b_{it} \).
References

