Exclusive dealing contracts

- Return to phenomenon of exclusive dealing: upstream seller dictates that it is sole source for downstream retailer
- Previously: explain by upstream moral hazard (eg. upstream manufacturer wants to recoup its R&D costs)
- Next abstract away from these issues. Ask instead: can exclusive dealing be anti-competitive (i.e., deter entry)?
Chicago school answer: No

- Reduced competition means higher wholesale price \iff lower profits for retailer.

- Since signing ED contract is voluntary, retailer would never voluntarily enter into a relationship with lower profits.

Consider model where retailer *would* voluntarily sign such contracts: Aghion/Bolton model (handout)
Setup

Graph: Incumbent (\mathcal{I}) and entrant (\mathcal{E}) upstream seller; one downstream retailer/buyer (\mathcal{B})

\mathcal{B} demands one unit of product, derives utility 1 from it.
\mathcal{I} produces at cost 1/2, sells at price P.
\mathcal{E} has cost c_e, unknown to \mathcal{B} or \mathcal{I}; it is uniformly distributed between $[0, 1]$. If enter, sells at price \tilde{P}.

Two stage game:

1. \mathcal{I} and \mathcal{B} negotiate a contract. \mathcal{E} decides whether or not to enter.

2. Production and trade:
 - Contract must be obeyed.
 - Bertrand competition between \mathcal{I} and \mathcal{E}.
In the absence of contract 1

Graph:

• Bertrand competition if E enters: market price is $\max \{c_e, 1/2\}$
 - If $c_e < 1/2$, E sells, at $\tilde{P} = 1/2$.
 - If $c_e > 1/2$, I sells, at $P = c_e$.

• E enters only when profit > 0: only when $c_e < 1/2$. Cost threshold c^* is 1/2. This is with probability $\phi = 1/2$. This is efficient: E enters only when technology is superior to I.

• If E doesn’t enter, I charges 1.
In the absence of contract 2

Sumup:

- Expected surplus of B: $\phi \times \frac{1}{2} + (1 - \phi) \times (1 - 1) = \frac{1}{4}$.
- Expected surplus of I: $\phi \times 0 + (1 - \phi) \times (1 - 1/2) = \frac{1}{4}$.
- B and I will write contract only when it leads to higher expected surplus for both B and I. This is Chicago school argument.
- Question: Is there such a contract which would deter E’s entry (i.e., lower cost threshold $c^* < 1/2$)?
With a contract 1

Consider a contract b/t B and I which specifies

1. P: price at which B buys from I
2. P_0: penalty if B switches to E (liquidated damages)

What is optimal (P, P_0)?

- What is B’s expected surplus from contract? $(1 - P)$ if buy from I; in order to generate sale, E must set \tilde{P} s.t. B gets surplus of at least $(1 - P)$. So: B’s expected surplus is $(1 - P)$.

- B get surplus of $\frac{1}{4}$ without contract, so will only accept contract if surplus $\geq \frac{1}{4} \iff (1 - P) \geq \frac{1}{4}$.

- When will E enter? If E enters, it will set $\tilde{P} = P - P_0$. In order to make positive profit $c_e \leq \tilde{P} = P - P_0$.

- E enters with probability $\phi' = \max\{0, P - P_0\}$.
With a contract 2

- \(\mathcal{I}\) proposes \(P, P_0\) to maximize his expected surplus, subject to \(\mathcal{B}\)’s participation:

\[
\max_{P,P_0} \phi' * P_0 + (1 - \phi') * (P - 1/2)
\]

subject to \(1 - P \geq 1/4\).

- Set \(P\) as high as possible: \(P = 3/4\).

- Graph: optimal \(P_0 = 1/2\), so that \(\mathcal{I}\)’s expected surplus = \(5/16 > 1/2\).

- \(\mathcal{B}\)’s expected surplus: \(1/4\). as before.

- \(\mathcal{E}\): only enter when \(c_e \leq P - P_0 = 1/4\). Inefficient: when \(c_e \in [1/4, 1/2]\), more efficient than \(\mathcal{I}\), but (socially desirable) entry is deterred.
Would parties want to renegotiate the contract?

- Assume contract is renegotiated if both \mathcal{I} and \mathcal{B} agree to do so.

- If \mathcal{E} enters and offers $\tilde{P} = 2/5$:

 - \mathcal{B} offers to buy from \mathcal{E}, and pay $1/4$ to \mathcal{I}.

 - \mathcal{I} accepts, since $1/4$ is same surplus he could get if \mathcal{B} “punished” him by purchasing from him at $P = 3/4$.

 - \mathcal{B} strictly better off, since $1 - 2/5 - 1/4 = 0.35$ is greater than $1/4$, his surplus under original contract.

- The exclusive dealing contract is not renegotation-proof.

- Same argument for \tilde{P} up to $1/2$:

 - No exclusive contracts are renegotiation-proof.

 - Once we take this into account, socially efficient outcome obtains, where \mathcal{E} enters if her costs $c_e \leq 1/2 = c_i$.
Remarks

• Contract deters entry by imposing switching costs upon buyer: much-observed practice: Loyalty-reward programs (Frequent-flyer miles, Buy 10/Get 1 free, etc.)

• Falls under category of raising rivals costs: recall that this is profitable if $\pi^m - K \geq \pi^d$. Here $\pi^d=\?, K=\?, \pi^m=\?$

• What if two competing incumbent sellers?

• What if \mathcal{E}’s cost known? Then Chicago result holds: contract will never be desired by both \mathcal{I} and \mathcal{B}.

• What if \mathcal{B} is risk averse (i.e., dislikes variation in payoffs)?

 – Under contract: guaranteed surplus of $1/4$, no matter if \mathcal{E} enters or not

 – Without contract, gets $1/2$ if \mathcal{E} enters, but 0 if \mathcal{E} stays out.

 – Prefers contract since it is less risky: if extremely risk-averse, exclusive contract could even survive renegotiation (i.e., if incumbent can set P very close to 1).