1 First Order Stochastic Dominance

Let \(F, G : \mathbb{R} \to [0, 1] \) be cumulative probability distributions.

1 Theorem The following are equivalent.
 \[\forall t \quad F(t) \leq G(t) \] \hspace{1cm} (1)
 For every nondecreasing function \(u : \mathbb{R} \to \mathbb{R} \), \[\int u \, dF \geq \int u \, dG. \] \hspace{1cm} (2)

2 Definition If either (1) or (2), we say that \(F \) (first order) stochastically dominates \(G \), written \(F \succeq_1 G \).

3 Theorem If \(F \succeq_1 G \) and \(F \neq G \), then for any strictly increasing function \(u \),
 \[\int u \, dF > \int u \, dG, \]
 provided \(\int u \, dG < \infty \). Consequently, \(F \succeq_1 G \) and \(G \succeq_1 F \) imply that \(F = G \).

Some hints on why this is true: Consider the case where the distributions \(F \) and \(G \) have support in the finite set \(\{ x_1 < \ldots < x_n \} \). Say \(F \) assigns value \(x_i \) probability \(p_i \) (which may be zero), \(i = 1, \ldots, n \), with \(\sum_{i=1}^n p_i = 1 \); and \(G \) assigns point \(x_i \) probability \(q_i > 0 \), \(i = 1, \ldots, n \), with \(\sum_{i=1}^n q_i = 1 \).

For a function \(u \), \(u_i = u(x_i) \). Then the expected utility of \(u \) under \(F \) is \(\sum_{i=1}^n u_i p_i \) and under \(G \) it is \(\sum_{i=1}^n u_i q_i \). Next rewrite this using Abel’s famous formula for “summation by parts.” That is,

\[
\begin{align*}
 u_1p_1 + u_2p_2 + \cdots + u_np_n &= p_1(u_1 - u_2) \\
 &\quad + (p_1 + p_2)(u_2 - u_3) \\
 &\quad + (p_1 + p_2 + \cdots + p_{n-1})(u_{n-1} - u_n) \\
 &\quad + (p_1 + p_2 + \cdots + p_n)u_n \\
 &= u_n - \sum_{i=1}^{n-1} (p_1 + \cdots + p_i)(u_{i+1} - u_i) \\
 &= u_n - \sum_{i=1}^{n-1} F(x_i)(u_{i+1} - u_i)
\end{align*}
\]
Likewise the expected utility of u under G is

$$u_n - \sum_{i=1}^{n-1} G(x_i)(u_{i+1} - u_i).$$

Now if u is nondecreasing, since $x_{i+1} > x_i$ we have that $u_{i+1} - u_i > 0$. So if $F \leq G$, it is clear that $\int u \, dF \geq \int u \, dG$.

By considering u of the form $u(x) = 0$ for $x < x_k$ and $u(x) = 1$ for $x \geq x_k$, we see that $F(x_k) \leq G(x_k)$ is necessary for (2) to hold.

An integration by parts argument: (1) \implies (2) Let u be nondecreasing. Assume F and G have common support $[a, b]$. If u is right continuous, then we can integrate by parts to get

$$\int_a^b u(x) \, dF(x) = u(x)F(x) \bigg|_a^b - \int F(x) \, du(x) = u(b) - \int F(x^{-}) \, du(x).$$

Likewise

$$\int_a^b u(x) \, dG(x) = u(b) - \int_a^b G(x^{-}) \, du(x).$$

But (1) implies $\int_a^b G(x^{-}) \, du(x) \leq \int_a^b F(x^{-}) \, du(x)$, so

$$\int_a^b u(x) \, dF(x) \geq \int_a^b u(x) \, dG(x).$$

A dominance argument: (1) \implies (2) By Proposition 13 below, setting $X(t) = \inf\{x \in \mathbb{R} : F(x) \geq t\}$, $Y(t) = \inf\{x \in \mathbb{R} : G(x) \geq t\}$, we have that X has cdf F and Y has cdf G, so

$$\int_0^1 u(X(t)) \, d\lambda(t) = \int u \, dF, \quad \int_0^1 u(Y(t)) \, d\lambda(t) = \int u \, dG.$$

Now observe that (1) implies $X(t) \geq Y(t)$ for each t. Thus $\int u \, dF \geq \int u \, dG$.

2 Increasing Risk

Suppose the supports of F and G lie in $[a, b]$. That is, $F(a) = G(a) = 0$ and $F(b) = G(b) = 1$.

4 Theorem The following are equivalent.

$$\forall s \in [a, b] \quad \int_a^s F(t) \, dt \leq \int_a^s G(t) \, dt \quad \& \quad \int_a^b F(t) \, dt = \int_a^b G(t) \, dt \quad (3)$$

For every concave u, $\int u \, dF \geq \int u \, dG. \quad (4)$
Proof that (4) implies (3): Let \(s \in [a, b] \). Integrating by parts,

\[
\int_a^s F(t) \, dt = tF(t) \bigg|_a^s - \int_a^s t \, dF(t).
\]

\[
= sF(s) - \int_a^s t \, dF(t)
\]

\[
= \int_a^s (s-t) \, dF(t)
\]

\[
= \int_a^b (s-t)^+ \, dF(t).
\]

Similarly

\[
\int_a^s G(t) \, dt = \int_a^b (s-t)^+ \, dG(t).
\]

Since \((s-t)^+ \) is a convex function of \(t \), (4) implies

\[
\int_a^s F(t) \, dt = \int_a^b (s-t)^+ \, dF(t) \leq \int_a^b (s-t)^+ \, dG(t) = \int_a^s G(t) \, dt.
\]

When \(s = b \), this becomes

\[
\int_a^b F(t) \, dt = \int_a^b (b-t) \, dF(t).
\]

Now \(b-t \) is both convex and concave in \(t \), so we must have

\[
\int_a^b F(t) \, dt = \int_a^b G(t) \, dt.
\]

\[\blacksquare\]

Figure 1. The nonincreasing convex function \((s-t)^+\).

"Proof" that (3) implies (4): Define \(\Phi(s) = \int_a^s F(t) \, dt \) and \(\Gamma(s) = \int_a^s G(t) \, dt \). Let \(u \) be concave. Then

\[
\int_a^b u(t) \, dF(t) = u(t)F(t) \bigg|_a^b - \int_a^b F(t) u'(t) \, dt
\]

\[
= u(b) - \int_a^b F(t) u'(t) \, dt
\]

\[
= u(b) - \left(\Phi(t)u'(t) \right) \bigg|_a^b - \int_a^b \Phi(t) u''(t) \, dt
\]

\[
= u(b) - \Phi(b)u'(b) + \int_a^b \Phi(t) u''(t) \, dt.
\]

Likewise,

\[
\int_a^b u(t) \, dG(t) = u(b) - \Gamma(b)u'(b) + \int_a^b \Gamma(t) u''(t) \, dt.
\]
But (3) implies \(\Gamma(b) = \Phi(b) \) and \(\Gamma(t) \geq \Phi(t) \) for all \(t \). Since \(u \) is concave, \(u''(t) \leq 0 \) for all \(t \). Thus \(\Phi(t)u''(t) \geq \Gamma(t)u''(t) \) for all \(t \), so

\[
\int_a^b u(t) dF(t) = u(b) - \Phi(b)u'(b) + \int_a^b \Phi(t)u''(t) dt \\
= u(b) - \Gamma(b)u'(b) + \int_a^b \Phi(t)u''(t) dt \\
\geq u(b) - \Gamma(b)u'(b) + \int_a^b \Gamma(t)u''(t) dt \\
= \int_a^b u(t) dG(t).
\]

5 Definition If either (3) or (4) holds, we say that \(G \) is riskier than \(F \).

6 Theorem If \(G \) is riskier than \(F \) and \(F \neq G \), then for any strictly concave \(u \) on \([a, b] \),

\[
\int u \, dF > \int u \, dG.
\]

Consequently, if \(G \) is riskier than \(F \) and \(F \) is riskier than \(G \), then \(F = G \).

3 Second Order Stochastic Dominance

Suppose the supports of \(F \) and \(G \) lie in \([a, b] \).

7 Theorem The following are equivalent.

\[
\forall s \in [a, b] \quad \int_a^s F(t) dt \leq \int_a^s G(t) dt \tag{5}
\]

For all nondecreasing concave \(u \) defined on \([a, b] \),

\[
\int u \, dF \geq \int u \, dG. \tag{6}
\]

Proof: The proof of this is virtually identical to that of Theorem 4, taking note of the fact that (6) is equivalent to

For all nonincreasing convex \(u \) defined on \([a, b] \),

\[
\int u \, dF \leq \int u \, dG,
\]

and the fact that \((s - t)^+ \) is a nonincreasing convex function of \(t \). Note that \(b - t \) is not a nondecreasing concave function of \(t \), so we cannot conclude \(\int_a^b F(t) dt \geq \int_a^b G(t) dt \), so the two integrals need not be equal.

8 Definition If either (5) or (6) holds, then we say that \(F \) second order stochastically dominates \(G \), written \(F \succ_{2} G \).
9 Theorem If \(u \) is strictly increasing and strictly concave and \(F \succcurlyeq_2 G \) and \(F \neq G \), then
\[
\int u \, dF > \int u \, dG.
\]

Thus \(F \succcurlyeq_2 G \) and \(G \succcurlyeq_2 F \) imply \(F = G \).

Now drop the assumption that \(F \) and \(G \) have bounded support.

10 Theorem The following are equivalent.
\[
\forall s \in \mathbb{R} \quad \int (x \wedge s) \, dF(x) \geq \int (x \wedge s) \, dG(x). \tag{7}
\]

For all nondecreasing concave \(u \) defined on the support of both \(F \) and \(G \),
\[
\int u \, dF \geq \int u \, dG \tag{8}
\]

11 Definition In this case we still say \(F \succcurlyeq_2 G \).

12 Theorem If \(u \) is strictly increasing and strictly concave and defined on the support of both \(F \) and \(G \), and \(F \succcurlyeq_2 G \) and \(F \neq G \), then
\[
\int u \, dF > \int u \, dG.
\]

A Constructing a random variable with a given cdf

13 Proposition Given any function \(F: \mathbb{R} \to [0,1] \) that is nondecreasing, right continuous, and satisfies \(\lim_{t \to -\infty} F(t) = 0 \) and \(\lim_{t \to \infty} F(t) = 1 \), there is a random variable \(X \) on the standard probability space \((\mathbb{R}, \mathcal{B}, \lambda)\) with \(F = F_X \).

Proof: Given such an \(F \), define \(X : [0,1] \to \mathbb{R} \) by
\[
X(t) = \inf \{ x \in \mathbb{R} : F(x) \geq t \}.
\]
(This makes \(X(0) = -\infty \), but that’s okay since \(\lambda\{0\} = 0 \).) When \(F \) is strictly increasing and maps onto \([0,1]\), then \(X \) is just \(F^{-1} \). More generally, flat spots in \(F \) correspond to jumps in \(X \) and vice-versa. See Figure 2.

First note that \(X \) is nondecreasing, and therefore Borel measurable (inverse images of intervals are intervals). To see this, let \(t < s \). Then
\[
\{ z \in \mathbb{R} : F(z) \geq s \} \subset \{ z \in \mathbb{R} : F(z) \geq t \},
\]
so
\[
X(t) = \inf \{ z \in \mathbb{R} : F(z) \geq t \} \leq \inf \{ z \in \mathbb{R} : F(z) \geq s \} = X(s).
\]
Thus \(X \) is a random variable on the probability space \([0,1]\). Since \(F \) is right continuous, another key property is that
\[
X(t) \leq y \iff t \leq F(y),
\]
which implies that
\[\{ t \in [0, 1] : X(t) \leq y \} = [0, F(y)], \]
so
\[\lambda \{ t \in [0, 1] : X(t) \leq y \} = F(y). \]
In other words, \(F \) is the cdf of \(X \).

B Integration by parts

This is not the most general integration by parts theorem, but it is not bad, and it is easy to prove using Fubini’s Theorem. I have such a proof in a separate handout.

14 Integration by Parts Suppose \(F \) and \(G \) satisfy \(F(x) = F(a) + \int_a^x f(s) \, ds \) and \(G(x) = G(a) + \int_a^x g(s) \, ds \) for every \(x \) in \([a, b] \), where \(f \) and \(g \) are integrable over \([a, b] \) and \(fg \) is integrable over \([a, b] \times [a, b] \). Then
\[
\int_a^b F(x)g(x) \, dx = F(b)G(b) - F(a)G(a) - \int_a^b f(x)G(x) \, dx.
\]

C A Still More General Result

C.1 Finite measures and nondecreasing functions

Let \(\mu \) be a finite (nonnegative) measure on the Borel subsets of \(R \). Define the function \(F_\mu : R \to R_+ \) by
\[
F_\mu(x) = \mu(\{ y \in R : y \leq x \}).
\]
\(F_\mu \) is called the distribution function of \(\mu \), and has the following properties:

1. \(F_\mu \) is nondecreasing.

2. \(F_\mu \) is right continuous. That is, \(F_\mu(x) = \lim_{y \downarrow x} F_\mu(y) \).
3. \(\lim_{x \to -\infty} F_\mu(x) = 0 \).

4. \(\lim_{x \to \infty} F_\mu(x) = \mu(R) \).

5. \(F(b) - F(a) = \mu((a, b]) \) for \(a \leq b \).

Conversely, for any \(F : R \to R_+ \) satisfying

1. \(F \) is nondecreasing.

2. \(F \) is right continuous.

3. \(\lim_{x \to -\infty} F(x) = 0 \).

4. \(\lim_{x \to \infty} F(x) < \infty \).

there is a unique nonnegative Borel measure \(\mu_F \) satisfying \(\mu_F((a, b]) = F(b) - F(a) \) for \(a \leq b \).

Given a distribution function \(F : R \to R_+ \) and a \(\mu_F \)-integrable function \(g \), the Lebesgue–Stieltjes integral

\[
\int g \, dF = \int g \, d\mu_F
\]

by definition.

15 Integration by Parts for Distribution Functions Let \(F \) and \(G \) be distribution functions on \(R \). Then

\[
\int_{[a,b]} F(x) \, dG(x) = F(b)G(b) - F(a)G(a) - \int_{[a,b]} G(x^-) \, dF(x),
\]

where \(G(x^-) = \lim_{y \uparrow x} G(y) \).

Proof: Define \(A = \{(x, y) \in (a, b]^2 : x \leq y \} \). By Fubini’s Theorem, we have

\[
\int \int I_A \, d(\mu_G \times \mu_F) = \int_{[a,b]} \left(\int_{[a,b]} I_A \, d\mu_G \right) \, d\mu_F
\]

\[
= \int_{[a,b]} \left(\int_{[a,b]} I_A \, d\mu_F \right) \, d\mu_G = \int_{[a,b]} (F(x) - F(a)) \, d\mu_G(x)
\]

\[
= \int_{[a,b]} (G(b) - G(y^-)) \, d\mu_F(y).
\]

Rearrange to get

\[
\int_{[a,b]} (F(x) - F(a)) \, d\mu_G(x) = \int_{[a,b]} (G(b) - G(y^-)) \, d\mu_F(y)
\]

or

\[
\int_{[a,b]} F(x) \, dG(x) - F(a)(G(b) - G(a)) = G(b)(F(b) - F(a)) - \int_{[a,b]} G(y^-) \, d\mu_F(y),
\]

from which the conclusion follows.

16 Corollary If either \(F \) or \(G \) is continuous, then

\[
\int_{[a,b]} F(x) \, dG(x) = F(b)G(b) - F(a)G(a) - \int_{[a,b]} G(x) \, dF(x).
\]

References