Endogenous Growth

Senior you should have your final
due June 4 at noon

Final for all non-seniors posted June 5
5pm
due June 9 at noon
If you want to do it early, email me
Outline

• Endogenous growth
 – The problem
 – Human capital
 – Technical progress
 – Increasing returns

• Growth as Political economy
 – Private decisions in a public context
 – Public decisions influenced by private preferences
 – Growth as a complex system problem
Traditional growth theory

• Focus on capital and savings rates
• Models are clean but run into problems when we look at them in the real world context
• So we need different ways of thinking about growth problems.
Endogenous Growth

• Maybe assuming constant drift in technical change (recall in the Solow+ technical change, labor efficiency growth at constant rate $(1+\pi)$) is not so interesting

• In fact growth is a social process
 – In some situation imitation is easy
 • That would lead to convergence
 – In others it may be hard
 • That might lead to divergence

• So we need to think about how technology changes
Possibility 1. Human capital

- Solow => \(Y = K^{\alpha}L^{1-\alpha} \)
 - \(L \) evolves at rate \((1+\eta) \), and \(K \) depends on savings
 - \(k_{t+1} = (1-d)k_t + sy_t \) \(\text{Steady state } (\eta+d)/s = y(k)/k \)

- Now suppress the population change part and think
 - \(y = k^{\alpha}h^{1-\alpha} \) \(\iff (Y = k^{\alpha}h^{\beta}L^{1-\alpha-\beta}) \)
 - \(k_{t+1} = k_t + sy_t \)
 - \(h_{t+1} = h_t + qy_t \)

- Model is a bit more intricate but by the same logic as before this model is going to have a steady state.
 - Because there are constant returns to scale you will settle down to a constant growth rate (rather than a level)
 - This will involve a constant physical human capital ratio \(r \) \((h/k) \) equal to \(q/s \).
 - As a result \(k_{t+1}/k_t = 1 + sy_t/k_t \) or \(\Delta k_t = sr_t^{1-\alpha} \)
 - Steady state \(\Delta k = sr^{1-\alpha} = s^\alpha q^{1-\alpha} \)
Proof

• \(k_{t+1} = k_t + sy_t \)
 • Define \(r \) to be \(\frac{h}{k} \frac{y}{k} = \frac{k^\alpha h^{1-\alpha}}{k} = h^{1-\alpha}k^{1-\alpha} = r^{1-\alpha} \)
• Divide both sides by \(k_t \)
 • A. \(\frac{(k_{t+1})}{k_t} = 1 + s(y_t)/k_t = sr_t^{1-\alpha} + 1 \)
• Similarly
 • B. \(\frac{(h_{t+1})}{h_t} = 1 + q(y_t)/h_t = qr_t^{-\alpha} + 1 \)
– Divide B by A
 • \(\frac{h_{t+1}/h_t}{k_{t+1}/k_t} = \frac{(qr_t^{-\alpha} + 1)}{(sr_t^{1-\alpha} + 1)} \)
 • \(\frac{h_t/k_t}{k_{t+1}/h_t} \)
• OR \(r_{t+1} = r_t \frac{(qr_t^{-\alpha} + 1)}{(sr_t^{1-\alpha} + 1)} \)
 – if we multiply the top by \(1/qr_t^{-\alpha} \) and the bottom by \(1/sr_t^{1-\alpha} \)
 • \(r_{t+1} = q/s \frac{(1+r_t^{-\alpha}/q)}{(1+r_t^{1-\alpha}/s)} \)
 – if you multiply both sides by \(r_t \) and then divide the ratio by \(r_t^{1-\alpha} \)
 • \(r_{t+1} = r_t \frac{(q/r_t + r_t^{\alpha-1})}{(s+r_t^{\alpha-1})} \)
• Now can show if \(r_t > q/s \) => \(r_t > r_{t+1} > q/s \)
 • Part 1. if \(r_t > q/s \) then \(r_t^{\alpha}/q > r_t^{1-\alpha}/s \) => \((1 + r_t^{\alpha}/q)/(1 + r_t^{1-\alpha}/s) > 1 \) => \(r_{t+1} > q/s \)
 • Part 2. \(q/s < r_t \) => \(q/r_t < s \) => \((q/r_t + r_t^{\alpha-1}) < (s+r_t^{\alpha-1}) \) => \(r_t > r_{t+1} \)

In fact \(r_{t+1} = r_t = q/s \) is unique solution
Implication

• Advantage over models of Tuesday
 – 1) explains why returns to physical capital may not be higher in poor countries
 – 2) does not require countries to converge...initial differences persist, and negative shocks really matter.
 – 3) but in a way artificial because there is no technical change.
 – Still Most of what is to be explain is away from trend.
Possibility 2: Knowledge

• Let knowledge be blueprints. The more blueprints the better but you have to do the early ones to get to the more interesting ones.

• $Y_t = E_t^\gamma K_t^\alpha [uH]^{1-\alpha}$

• $\Delta E = a(1-u)H$

• $K_{t+1} - K_t = sY_t$

• This model is both really similar and quite different.
Knowledge

• Similarities
 – Growth process looks the same (accumulate two factors E and K)
 – On each factor you have DMR

• Differences
 – $Y_t = E_t^\gamma K_t^\alpha [uH]^{1-\alpha}$ this is not CRS or DMR. The sum of the exponents is $1+\gamma$ so this function has increasing returns
 – What does the solution look like? In many ways just like the Solow model with exogenous technical change
 – Except that growth rate is endogenous—and it creates increasing returns (the higher your current level the higher your growth rates)
Increasing returns

• Some of what we see in the location of economic activity is in fact consistent with increasing returns

• Some of what we see suggests that increasing returns may not be very large
 – Separation of R&D and production location
 – Development of outsourcing
 – Development of trade in semi-finished goods.
The Revenge of political economy

• Growth you might study at Caltech
• Variables in the models
 – Depreciation
 – Population growth
 – Savings rates \((s)\)
 – Investment in Physical capital \((\Delta K)\)
 – Investment in Human capital \((\Delta H)\)
 – Investment in Knowledge capital \((\Delta E)\)
• Depend both on private and public decisions
Private decision influenced by social context

- Depreciation
 - Technical variable
 - But also a choice variable
- Individual can chose to spend more today to make breakdowns less likely
 - So trade off is between costs today (investment)
 - And cost tomorrow (maintenance replacement)
- Social context
 - Property rights => fear of expropriation ↓
 - Regulation => ↑ if good ↓ if bad
 - Taxation => ↑ if tax maintenance more than investment or ↓
 - Fashion? Is it chic to maintain?
True for depreciation also true for all the others

- Population growth
 - Depends on fertility decisions
 - In turn depends on human capital of women and technology (contraception?)
 - Also depends on costs and returns (wage labor vs stay at home)

- Savings rates (s)
 - Depends on what individuals decide to do (how long they live...)
 - Also on incentives and requirements of states (tax law, mandatory contributions)
 - And decisions made by firms (distribute profits or invest them)

- Investment in Physical capital (ΔK)
- Investment in Human capital (ΔH)
- Investment in Knowledge capital (ΔE)
 - Different set of institutions (but abundance of K and H will lower the cost)
Public decisions influenced by private concerns

• Lets choose a policy
 – building code
 – child care policy
 – education policy

• Then three issues
 – Private preferences
 • I am a home owner
 • I am a would be home owner
 • I am a builder
 • I am a banker....
 – Key trade off efficiency (what is best for society) and distribution (what is best for me).
 – Aggregation of those preferences
 • Do we have a referendum
 • Do we delegate to an assembly
 – Does the assembly delegate to an agency
 – Does the agency delegate to experts
How to solve

• Make the assumption that individuals who are making these decisions weight the private gains and private costs
 – Both in terms of what they want
 – And whether to express their opinion politically

• Then different aggregating mechanisms weight these preferences
Public decisions influenced by private concerns

• Even if we solve the policy decision issue we have to take a step back

• How do we chose the aggregation rule
 – Democracy.......authoritarian government
 – Voting.........delegation
Growth as a complex process

• In 5 slides we have traveled very far from
 – $k_{t+1} = (1-d)k_t + sy_t$
• It’s a good thing.
• If the problem was simple it would have been solved
• That its complex and important means we have something to work on.
The End!

THANK YOU ALL

Best of Luck on the Final