Risk and the market for insurance

Armen Alchian:

“To lower auto insurance rate premium we should put a stake on each steering wheel”
Outline

• Risk and Risk attitudes
• Kinds of risk
• Mitigating risk
• Insurance
• Diversification
• Mitigating risk and incentives
Risk

- Consumer max utility
- But uncertainty
 - Income
 - Prices
 - Quality
 - Preferences

Some outcomes are better than others
- How to plan?
- How to mitigate?

- Firm Max profits
- But uncertainty
 - Output price (demand)
 - Input prices
 - Technology
 - Innovation
 - Regulation
Risk attitudes

• Take a coin flip if heads $10 if tails $0.
 – Probability of heads 0.5, probability of tails 0.5
• How much are you willing to pay for the outcome of a flip
 – Less than $5, more than $5
 – If less than $5 then risk averse, if more Risk loving
• How much are you willing to pay for
 – Same coin flip if heads $100,000 if tails -$99990.
 – Expected value is $5
• Coin flip, heads 1/1000000 pays $500,000 tails 0, cost $1
 – Expected value -0.5
Risk attitudes

- Risk averse

\[U(\text{PX}_l + (1-P)\text{PX}_h) \]

\[PU(X_l) + (1-P)U(X_h) \]

- Risk loving

\[U(\text{PX}_l + (1-P)\text{PX}_h) \]

\[PU(X_l) + (1-P)U(X_h) \]
Kinds of risk

• Three kinds of risk
 • Exogenous risk (F. Knight’s risk)
 – Sets of events to which we can assign probabilities
 – And those events do not depend on the actors
 • Endogenous risk
 – Sets of events given but probability of an event depends on the actors of the game
 – E.g. Adverse selection
 • Risk depends on who takes up a contract (life insurance, subprime mortgages)
 – Moral Hazard
 • Risk depends on care one takes (do you take up smoking after buying a life insurance policy…)
 • Uncertainty
 – Things that matter but either the relevant list of events is not known or the relevant probabilities cannot be computed.
 – So you know you care but you are in a bind.
Mitigating risk

• Matters for most of us who are risk averse
• Exogenous risk
 – What we are going to work on next
• Endogenous risk
 – Contracts and institutions
• Uncertainty
 – Well that remains an open question
 – Connection to robust systems in CS
Insurance

• Lets take a partial equilibrium approach
• Individual risk averse
 \(- U(pX_l+(1-p)X_h) > pU(X_l)+(1-p)U(X_h)\)
• It follows that there must exist \(y\) such that
 \(- U(pX_l+(1-p)X_h-y) = pU(X_l)+(1-p)U(X_h)\)
• \(y\) is the price an individual is willing to pay to insure against the risk of the low outcome
• Now we need to deal with the other side of the market
Insurers

• Individuals get good news with probability \((1-p)\) and bad news with probability \(p\)
• An insurance contract implies they receive average return \(X\) so on net the insurance company pays \(X-X_l\) to those with bad news and gets \(X_h - X\) from those with good news.
• Assume there are \(n\) individuals in such a situation and that risk is independently distribute so that we can write
• So returns are \(\{(1-p)n(X_h-X) - pn(X-X_l)\}\)
 – Or \(n\{(1-p)X_h+p(X_l)-X\}\)
 – If the industry is competitive there will be zero profits so \(X=(1-p)X_h+pX_l\)
 – Insurance is free \((y=0)\)
Free insurance

• If the number of buyers are large, risks are independent, industry is competitive then insurance is close to free
 – the insurance company pools the risks and eliminates it in the aggregate

• So key here is whether risks are independent
 – Life insurance?
 – Accident insurance
 – Unemployment
 – Mortgage insurance
 – Hurricanes, Earthquakes
Diversification

• Risk we saw above are un-diversifiable
 – Either I am alive or I am not
 – Either I have an accident or I do not
 – So I really care to have insurance

• But some risks are diversifiable
 – This is more true for firms (multiproduct)
 – But works for individual wealth
• Assume to assets X and Y
• \(X = X_l \) with probability \(p \) and \(X_h \) with prob \((1-p)\)
• \(Y = Y_l \) with probability \(q \) and \(Y_h \) with prob \((1-q)\)
• What should I do. Let me put \(\alpha \) of my wealth in X and \((1- \alpha)\)
• What is optimal \(\alpha \)? (tradeoff between return and risk)

<table>
<thead>
<tr>
<th></th>
<th>(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Y)</td>
<td>Good ((1-p))</td>
</tr>
<tr>
<td>Good ((1-q))</td>
<td>(\alpha X_h + (1- \alpha)Y_h)</td>
</tr>
<tr>
<td>Bad ((q))</td>
<td>(\alpha X_h + (1- \alpha)Y_l)</td>
</tr>
</tbody>
</table>

• But we can’t say anything about what is optimal unless we know how X and Y co-vary
• Lets look at three simple cases
Perfect correlation (p=q)

- Optimal α?
- Either $\alpha=1$ or $\alpha=0$
- Why

<table>
<thead>
<tr>
<th></th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Good (1-p)</td>
</tr>
<tr>
<td></td>
<td>Bad (p)</td>
</tr>
<tr>
<td>Good (1-q)</td>
<td>$\alpha X_h + (1- \alpha)Y_h$</td>
</tr>
<tr>
<td></td>
<td>$\text{Prob}=1-p$</td>
</tr>
<tr>
<td>Bad (q)</td>
<td>$\alpha X_h + (1- \alpha)Y_l$</td>
</tr>
<tr>
<td></td>
<td>$\text{Prob}=0$</td>
</tr>
<tr>
<td></td>
<td>$\alpha X_l + (1- \alpha)Y_l$</td>
</tr>
<tr>
<td></td>
<td>$\text{Prob}=1-p$</td>
</tr>
</tbody>
</table>

- Suppose $Y_l<X_l$ and $Y_h<X_h$
- Then X is better than Y no matter what $\alpha=1$
- Suppose $X_l<Y_l$ and $Y_h<X_h$
- Then X is better in good time and Y in bad times if you are risk averse enough you pick Y $\alpha=0$
- otherwise X ($\alpha=1$)
- You can check all the other possibilities
Independence

- \(q=p \) (prob good-good \(\left(p^*q\right)=p^2 \))
- Optimal \(\alpha \)?
- If risk averse \(0<\alpha<1 \)
- Why

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Good (1-p)</th>
<th>Bad (p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Good (1-p)</td>
<td>Bad (p)</td>
<td></td>
</tr>
<tr>
<td>Good (1-p)</td>
<td>(\alpha X_h + (1- \alpha)Y_h)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prob=(1-p)^2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\alpha X_l + (1- \alpha)Y_h)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prob=(1-p)p</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bad (p)</td>
<td>(\alpha X_h + (1- \alpha)Y_l)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prob=(1-p)p</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\alpha X_l + (1- \alpha)Y_l)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prob=p^2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- \(\alpha=1 \) or \(\alpha=0 \)
- Means you bounce between two extreme outcome
- \(0<\alpha<1 \) means you put less weight on the extreme outcomes and more on the middling ones (one good one bad)
- If fact \(p=\frac{1}{2} \) means you only get both bad outcomes with probability \(\frac{1}{4} \)
Perfect negative corelation

- Y=Y₁ if and only if (X=X₉)
- Optimal α?
- If risk averse 0<α<1
- Why

<table>
<thead>
<tr>
<th></th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Good (1-p)</td>
</tr>
<tr>
<td>Good (p)</td>
<td>α X₉+(1- α)Y₉</td>
</tr>
<tr>
<td></td>
<td>Prob=0</td>
</tr>
<tr>
<td>Bad (1-p)</td>
<td>α X₉+(1- α)Y₁</td>
</tr>
<tr>
<td></td>
<td>Prob=(1-p)</td>
</tr>
</tbody>
</table>

- Suppose Y<Y₉<X₉<X₉
- Then X is better than Y no matter what α=1
- But if X<Y₉
- X<α X₉+(1- α)Y₉
- If risk averse would like to insure so α>0 makes sense
- Of course you pay something on the other side because X₉>α X₉+(1- α)Y₉
- The closer α is to ½ the more insurance you are buying
 - If X=Y then perfectly insured
Optimal portfolios

• Whenever α is greater than 0 and less than 1 the individual is buying insurance.

• Optimal portfolio if X is the asset with a greater expected value, as $\alpha<1/2$ is optimal and the more risk averse you are the closer you get to a balanced portfolio.

• In general the more risk averse you are the more diversified you should be

• Why might risk aversion vary?
Insurance and incentives

• The problem of insurance is that it dampens incentives.
• Automobile driver likes to drive fast, and but she is risk averse.
• Accidents occur at an increasing rate as she drives faster.
• Assume first a world without insurance and the driver can drive either fast or safely (slower).
Insurance and incentives

• If she drives fast,
 – probability p she has accident and must pays C
 – probability $(1-p)$ she does not.
 – $U_F = U(F) + pU(Y-C) + (1-p)U(Y)$

• If she drives safely
 – probability $q<p$ has accident and must pays C
 – probability $(1-q)$ she does not.
 – $U_s = U(S) + qU(Y-C) + (1-q)U(Y)$

• $U_s - U_F = U(S) - U(F) + (q-p)U(Y-C) + (p-q)U(Y)$
• $U_s - U_F = U(S) - U(F) + (q-p)(U(Y) - U(Y-C))$
Insurance

• Assume $U_s - U_F = U(S) - U(F) + (q - p)(U(Y) - U(Y-C)) > 0$
• So our driver drives slowly.
 • $U_s = U(S) + qU(Y-C) + (1-q)U(Y)$
• Now enters the insurance company which offers to cover the cost of an accident at a price $qC + \Delta < pC$
• The driver buys the insurance so her utility is now
 • $U_s = U(S) + (Y-qC-\Delta) > U(S) + qU(Y-C) + (1-q)U(Y)$
 • Will she continue to drove slowly?
 • If she drives fast $U(F) + U(Y-qC-\Delta) > U(S) + U(Y-qC-\Delta)$
• Insurance interferes with the incentive to be safe
Market failure

- If she drives fast she has more accidents in fact at a rate P so the insurance company gets $qC + \Delta$ but pays out pC in claims. Market Fails

- **Solution 1:** company charges $pC + \Delta$, so driver much decide between
 - $U_s = U(S) + qU(Y-C) + (1-q)U(Y)$
 - $U_f = U(F) + U(Y-pC-\Delta)$
 - It could be that she does not buy insurance.

- **Solution 2** insurance company offers a good driver bonus.
 - $U_s = U(S) + U(Y-qC-\Delta)$ vs $U_f = U(F) + U(Y-pC-\Delta) + (p-q)U(p)$
 - Driver might buy this policy but its incomplete insurance
Incentives and risk

• The problem of insurance is that it makes people insensitive to outcomes.
• So it’s easy to insure for exogenous shocks, you just have to price it right.
• The problem is that in many cases individuals have some control over outcomes.
 – Accidents and speed of driving
 – Life insurance and health
 – Unemployment insurance and work
Beyond insurance

• Back to the problem of the firm
• From Last Thursday
• Let the production function be $F(L,K)$ where L is discretionary labor input and K is discretionary capital input.
• Here what matters is what is contractible.
 – Farmer has discretion on how hard he work
 – Landowner has discretion on capital improvement
What if not contractible

• What happens if there is a fixed rent for the land (and the farmer gets the net profit)
 – Landowner’s return is just the rent, he will make 0 discretionary capital investment.
 – Farmer max F(L,K)-L FOC F_l’ = 1 Efficient investment on discretionary labor

• What happens if the farmer is hired for the year?
 – Farmer’s return is just the wage, she will make 0 discretionary investment
 – landowner max F(L,K)-K FOC F_K’ = 1 Efficient investment on discretionary capital
Incentives require people to bear risk

• In the previous slides we assumed the ‘owner’ would make the efficient investment.
• But what if investment is risky?
• You can’t insure the owner and give him incentives.
• So if you want to put the owner in a high risk situation you have to pay him a lot
Best Insurance movie

• Double Indemnity (1944).
 – Happens in Glendale

• Remake: Body Heat (1981)
 – Happens in Florida