A characterization of combinatorial demand

C. Chambers F. Echenique
UC San Diego Caltech

Montreal Nov 19, 2016
This paper

Literature on matching (e.g. Kelso-Crawford) and combinatorial auctions (e.g. Milgrom):

\[D(p) = \arg\max \{ v(A) - \sum_{a \in A} p_a : A \subseteq X \} \]

When is * true?
What is the behavioral content of the combined assumptions of rationality and quasilinearity?
Notation

- Let X be a finite set (of items).
- Let S be the set of all nonempty subsets of 2^X.
- (so the empty set is not in S, but $\{\emptyset\}$ is).
- Identify $A \subseteq X$ with $1_A \in \mathbb{R}^X$.
- If $p \in \mathbb{R}^X$ then $\langle p, A \rangle = \sum_{x \in A} p_x$.

Chambers-Echenique

Combinatorial demand
Demand

A demand function is

\[D : \mathbb{R}_+^X \rightarrow S \]

s.t. \(\exists \bar{p} \in \mathbb{R}_+^X \) with \(D(p) = \{\emptyset\} \) for all \(p \geq \bar{p} \).

(\(\bar{p} \) a choke price)
Demand

D is \textit{quasilinear rationalizable} if

$$\exists \nu : 2^X \to \mathbb{R} \text{ s.t }$$

$$D(p) = \arg\max_{A \subseteq X} \nu(A) - \langle p, A \rangle$$
Suppose D is QL-rationalizable

Let $A \in D(p)$ and $B \in D(q)$.

\[
v(A) - \langle p, A \rangle \geq v(B) - \langle p, B \rangle \\
v(B) - \langle q, B \rangle \geq v(A) - \langle q, A \rangle.
\]

Thus: $\langle p - q, A - B \rangle \leq 0$.
Suppose D is QL-rationalizable

Let $A \in D(p)$ and $B \in D(q)$.

\[
v(A) - \langle p, A \rangle \geq v(B) - \langle p, B \rangle
\]
\[
v(B) - \langle q, B \rangle \geq v(A) - \langle q, A \rangle.
\]

Thus: $\langle p - q, A - B \rangle \leq 0$.

The law of demand!
Demand

A demand function D

- satisfies the *law of demand* if for all $p, q \in \mathbb{R}_++^X$, and all $A \in D(p)$ and $B \in D(q)$,

 $$\langle p - q, A - B \rangle \leq 0;$$

- is *upper hemicontinuous* if, $\forall p \in \mathbb{R}_++^X$, \exists nbd V of p s.t. $D(q) \subseteq D(p)$ when $q \in V$.

Chambers-Echenique

Combinatorial demand
Main result

Theorem

A demand function is quasilinear rationalizable iff it is upper hemicontinuous and satisfies the law of demand.
Identification

Theorem

For any quasilinear rationalizable D, *there is a unique monotone* $\nu : 2^X \rightarrow \mathbb{R}$ *for which* $\nu(\emptyset) = 0$ *which rationalizes* D.

Utility is identified up to an additive constant.
Monotone rationalization

\(D \) is **monotone, concave, quasilinear rationalizable** (MCQ-rationalizable) if \(\exists \) a monotone, concave \(g : \mathbb{R}^X_+ \to \mathbb{R} \) s.t
\[
v(A) = g(1_A), \text{ and}
\]
\[
D(p) = \text{argmax}\{v(A) - \langle p, A \rangle : A \subseteq X\}.
\]

Corollary

If a demand function is quasilinear rationalizable, then it is MCQ-rationalizable.
Proof ideas

\[D(p) = \arg\max_{A \subseteq X} \nu(A) - \langle p, A \rangle \]

If \(A \in D(p) \) then we want \(p \) to be the “gradient of \(\nu \) at \(A \).” Can recover \(\nu \) by “integrating” over \(p \).
Cyclic monotonicity

D satisfies cyclic monotonicity if, for all n (using summation mod n),

$$\sum_{i=1}^{n} \langle p_i, A_i - A_{i+1}\rangle \leq 0,$$

where $A_i \in D(p_i)$, for all sequences $\{p_i\}_{i=1}^{n}$.
Cyclic monotonicity

Define:

\[\nu(A) = \inf \langle p_1, A - A_1 \rangle + \ldots + \langle \bar{p}, A_k - \emptyset \rangle, \]

inf is taken over all finite seq. \((p_i, A_i)_{i=1}^k\) with \(A_i \in D(p_i)\).
Cyclic monotonicity

Define:

\[v(A) = \inf \langle p_1, A - A_1 \rangle + \ldots + \langle \bar{p}, A_k - \emptyset \rangle, \]

inf is taken over all finite seq. \((p_i, A_i)_{i=1}^k\) with \(A_i \in D(p_i)\).

Observe, by CM,

\[- \{ \langle p_1, A - A_1 \rangle + \ldots + \langle \bar{p}, A_k - \emptyset \rangle \} + \langle p, A - \emptyset \rangle \leq 0.\]

So \(v(A)\) is well defined (and \(\geq 0\)).
Let $A \in D(p)$ and $B \subseteq X$ ($B \in D(R^X_{++})$ need a different arg. otherwise).
By defn. of v,
\[
v(B) \leq \langle p, B - A \rangle + v(A).
\]
Thus $v(A) - \langle p, A \rangle \geq v(B) - \langle p, B \rangle$.

Let $A \in D(p)$ and $B \subseteq X$ ($B \in D(R^X_{++})$ need a different arg. otherwise).

By defn. of v,

$$v(B) \leq \langle p, B - A \rangle + v(A).$$

Thus $v(A) - \langle p, A \rangle \geq v(B) - \langle p, B \rangle$.

Proof that if $A \in D(p)$ and $B \notin D(p)$ then $v(A) - \langle p, A \rangle > v(B) - \langle p, B \rangle$ requires more.
D satisfies condition ♠ if
\[\forall p \text{ and } B \not\in D(p) \exists A \in D(p) \text{ and } p' \text{ s.t.} \]

\[A \in D(p') \text{ and } \langle p', A - B \rangle > \langle p, A - B \rangle. \]
Cyclic monotonicity

Lemma

If D satisfies cyclic monotonicity, and condition ♠, then it is quasilinear rationalizable.

Based on ideas in Rochet/Rockafellar (but ♠ plays a technical role).
Lemma

A demand function satisfies cyclic monotonicity if it satisfies the law of demand.

Follows from recent results in mech. design (Lavi, Mu’alem, and Nisan; Saks and Yu; and Ashlagi, Braverman, Hassidim, and Monderer).
Related literature

- Rochet/Rockafeller
- Brown and Calsamiglia
- Sher and Kim
- Lavi, Mu’alem, and Nisan;
- Saks and Yu;
- Ashlagi, Braverman, Hassidim, and Monderer
Conclusions

- Quasilinear rational demand is a ubiquitous assumption.
- Our result is the first characterization in terms of observable behavior.
- Identification enables welfare analysis.
- New use for recent results in mech. design.