On multiple discount rates

C. Chambers F. Echenique
Georgetown Caltech

Columbia Sept. 15 2017
This paper

A theory of intertemporal decision-making that is robust to the discount rate.
Motivation

Problem:

- Economists use present-value calculations to make decisions.
- Project evaluation or cost-benefit analysis.
- Calculations are very sensitive to the assumed discount rate.
Weitzman (AER, 2001):
Cost-benefit analysis is now used to analyze environmental projects “the effects of which will be spread over hundreds of years . . .” “The most critical single problem with discounting future benefits and costs is that no consensus now exists, or for that matter has ever existed, about what actual rate of interest to use.”
Motivation: Climate change
Tony asks a question.
Nicholas gives an answer.

Climate change

Hal Varian (NYT, 2006):
“should the social discount rate be 0.1 percent, as Sir Nicholas Stern, ... would have it, or 3 percent as Mr. Nordhaus prefers?”

N. Stern: 0.1% W. Nordhaus: 3%

Hal Varian (NYT, 2006):

“There is no definitive answer to this question because it is inherently an ethical judgment that requires comparing the well-being of different people: those alive today and those alive in 50 or 100 years.”
Motivation

- Not only ethical judgement.
- Also economic considerations, theoretical and empirical:
 - What is the right model think about intertemporal tradeoffs? What is the right savings rate; growth rate; role of uncertainty, etc.
Survey of 2,160 Ph.D-level economists.

- “what real interest rate should be used to discount over time the benefits and costs of projects being proposed to mitigate the possible effects of global climate change.”
- use “professionally considered gut feeling”
Weitzman (AER, 2001)
Weitzman (2001)

Survey of 2,160 Ph.D-level economists:
- Mean rate: 3.96%
- StdDev: 2.94%

- Mean rate: 4.09%
- StdDev: 3.07%
US Office of Management and Budget recommends:

Use discount rate between 1% and 7%, when evaluating “intergenerational benefits and costs.”
A decision maker has to make a decision. Her advisors have a set $D \subset (0, 1)$ discount rates.
Primitives of our model.

- A set $X (= \mathbb{L}_\infty)$ of sequences $\{x_n\}_{n=0}^\infty$.
- A (closed) set $D \subseteq (0, 1)$ of discount factors.

- Sequences should be interpreted as utility streams.
- D could come from a survey (like Weitzman) or a government agency like the US Office of Management and Budget.
Two criteria:

▶ **Utilitarian**

\[U(x) = \sum_{t=0}^{\infty} \left(\int_{D} (1 - \delta) \delta^t \, d\mu(\delta) \right) x_t \]

where \(\mu \) is a prob. measure on \(D \).

(favored by Weitzman; analyzed recently by Jackson and Yariv)
Two criteria:

- **Utilitarian**

\[
U(x) = \sum_{t=0}^{\infty} \left(\int_{D} (1 - \delta)\delta^t d\mu(\delta) \right) x_t
\]

where \(\mu \) is a prob. measure on \(D \).
(favored by Weitzman; analyzed recently by Jackson and Yariv)

- **Maxmin**

\[
U(x) = \min\{(1 - \delta) \sum_{t=0}^{\infty} \delta^t x_t : \delta \in \hat{D} \}
\]

for \(\hat{D} \subseteq D \).
(used for robustness in analogous situations with uncertainty).
Example 1

Utilitarian with $D = \{\frac{1}{10}, \frac{9}{10}\}$ and uniform μ. Then

$$(1, -5.55, 0, 0, \ldots) \sim (0, 0, \ldots)$$

while

$$(0, 0, \ldots) \succ (0, \ldots, 0, 1, -5.55, 0, 0, \ldots)$$

9 periods

(Issue highlighted by Weitzman and Jackson-Yariv)

Ruled out by maxmin.
How to think about utilitarian and maxmin

Example 2

\[(10, 8, 0, \ldots) \succ (14, 4, 0 \ldots)\]

while

\[(14, 1004, 0 \ldots) \succ (10, 1008, 0, \ldots).\]

Ruled out by utilitarian; allowed by maxmin.
Example 3

\[(0, 1, 0, \ldots) \succ (0, 0, 2, 0, \ldots)\]

while

\[(5, 0, 2, \ldots) \succeq (5, 1, 0, \ldots)\]

(a failure of \textit{separability})

Ruled out by utilitarian; allowed by maxmin.
How to think about utilitarian and maxmin

In *common*:

- Unanimity
- Intergenerational comparability.
- Intergenerational fairness.

Give rise to a new *multi-utilitarian* criterion.

Special about utilitarian: + Intergenerational comparability.

Special about maxmin: + Intergenerational fairness.
Unanimity
Comparability
Intergen. fairness

Utilitarian + comparability

Unanimity
Comparability
Intergen. fairness

Maxmin + fairness

Multi-utilitarian

Chambers-Echenique

Robust Discounting
Utilitarian and maxmin have in common:

A unanimity axiom.

If all experts recommend x over y, then choose x over y.
Utilitarian and maxmin have in common:

A unanimity axiom.

D-monotonicity:

\[(\forall \delta \in D) \ (1 - \delta) \sum_t \delta^t x_t \geq (1 - \delta) \sum_t \delta^t y_t \implies x \succeq y;\]

and

\[(\forall \delta \in D) \ (1 - \delta) \sum_t \delta^t x_t > (1 - \delta) \sum_t \delta^t y_t \implies x \succ y;\]
Utilitarian

Maxmin

D-MON
Utilitarian and maxmin have in common:

Intergenerational comparability of utility.

Co-cardinality (COC): For any $a > 0$ and constant seq. θ,

$$x \succeq y \text{ iff } ax + \theta \succeq ay + \theta.$$
How to think about COC:

- Wish to avoid the conclusion in Arrow’s thm.
- Arrow’s IIA says that only information on pairwise comparisons matter.
- Arrow: When comparing policies A and B, only generations’ ordinal ranking of A and B is allowed to matter.
- To relax IIA, d’Aspremont and Gevers (1977), (formalizing Sen) propose COC.
How to think about COC:

- Wish to avoid the conclusion in Arrow’s thm.
- When comparing policies A and B, also *utility levels* may matter.
- But not when utilities result from *the same* affine transformation.

COC: Constrain choice when all generations’ utilities are measured in the same units.
In comparing policies A and B, consider generation t’s utility $U(A, t)$ and $U(B, t)$.

Allow social decision to depend on utilities: weaken Arrow’s IIA.

Utility function $V(Z, t) = a + bU(Z, t)$ ($b > 0$) represents the same preferences as U.
In comparing policies A and B, consider generation t’s utility $U(A, t)$ and $U(B, t)$.

Allow social decision to depend on utilities: weaken Arrow’s IIA.

Utility function $V(Z, t) = a + bU(Z, t)$ ($b > 0$) represents the same preferences as U.

COC says that social decisions are invariant to common affine transformations.

Ex: $b = 1$. Then $V(A, t) - U(A, t) = V(B, t) - U(B, t) = a$ for all generations t.

So decision on A vs. B should be the same.
When COC fails.

Suppose

\[(10, 8, 0, \ldots) \succ (14, 4, 0 \ldots)\]

while

\[(1014, 1004, 1000 \ldots) \succ (1010, 1008, 1000, \ldots).\]
Utilitarian

Maxmin

D-MON

COC

Chambers-Echenique

Robust Discounting
Utilitarian and maxmin have in common:

Intergenerational fairness.

Convexity (CVX):

\[
\begin{align*}
x \succeq \theta \\
y \succeq \theta
\end{align*}
\implies \lambda x + (1 - \lambda) y \succeq \theta \quad \forall \lambda \in (0, 1)
\]
$\frac{1}{2} x_t + \frac{1}{2} y_t$
Note: CVX is an intrinsic preference for intertemporal smoothing.
Utilitarian and maxmin have in common:

\[D\text{-MON}, \text{COC} \text{ and CVX give rise to a } \textit{multi-utilitarian} \text{ criterion.}\]
Utilitarian and maxmin have in common:

Theorem

\(\succeq \) satisfies

- \(D\text{-MON} \),
- \(COC \),
- \(CVX \),
- \(CONT \)

iff \(\exists \) a convex set \(\Sigma \subseteq \Delta(D) \) s.t.

\[
U(x) = \min_{\mu \in \Sigma} \sum_{t=0}^{\infty} \left(\int_{D} (1 - \delta) \delta^t d\mu(\delta) \right) x_t
\]

represents \(\succeq \).
D-MON
COC
CVX

Utilitarian

Maxmin

Multi-utilitarian
What is special about Utilitarianism?
What is special about Utilitarianism?

Invariance with respect to individual origins of utilities (IOU):

\[x \succeq y \iff x + z \succeq y + z. \]
What is special about Utilitarianism?

Theorem

$s \succeq$ satisfies the axioms in Theorem 1 and IOU iff $\exists \mu \in \Delta(D)$ s.t.

$$U(x) = \sum_{t=0}^{\infty} \left(\int_D (1 - \delta)^t d\mu(\delta) \right) x_t$$

represents \succeq.
In comparing policies A and B, consider generation t’s utility $U(A, t)$ and $U(B, t)$.

Suppose that $V(A, t) - U(A, t) = V(B, t) - U(B, t) = a_t$ for all generations t.

No longer a common scale as in COC.

Allow social decision to depend on the change in generations’ utilities.
Intergenerational comparability – IOU

When IOU fails:

$$(10, 8, 0, \ldots) \succ (14, 4, 0, \ldots)$$

while

$$(14, 1004, 0, \ldots) \succ (10, 1008, 0, \ldots).$$
When IOU fails:

\[(0, 1, 0, \ldots) \succ (0, 0, 2, 0, \ldots)\]

while

\[(5, 0, 2, \ldots) \succ (5, 1, 0, \ldots)\]

violates IOU because

\[(5, 0, 2, \ldots) - (0, 1, 0, \ldots) = (5, 0, 2, \ldots) - (0, 0, 2, \ldots) = (5, 0, 0, \ldots).\]

(a failure of \textit{separability})
What is special about Maxmin?
What is special about Maxmin?

Invariance to stationary relabeling (ISTAT):

For all $t \in \mathbb{N}$ and all $\lambda \in [0, 1]$,

$$x \sim \theta \implies \lambda x + (1 - \lambda)(\underbrace{\theta, \ldots, \theta}_t, x) \sim \theta.$$
What is special about Maxmin?

Theorem

\(\succeq\) satisfies the axioms in Theorem 1, STAT and COMP iff \(\exists \hat{D} \subseteq D\) (nonempty and closed) s.t.

\[
U(x) = \min \{ (1 - \delta) \sum_{t=0}^{\infty} \delta^t x_t : \delta \in \hat{D} \}
\]

represents \(\succeq\).
Recall “anonymity,” a basic notion of fairness: Social decisions shouldn’t depend on agents’ names.

Should we impose anonymity?
Recall “anonymity,” a basic notion of fairness: Social decisions shouldn’t depend on agents’ names.

Should we impose anonymity?

We may have:

\((-1, 3, 3, -1, 0, \ldots) \sim 0\)

and

\(0 \succ (-1, -1, 3, 3, 0, \ldots)\),

a violation of anonymity but natural in the intertemporal context.
Meaning of ISTAT:

ISTAT says that \((-1, 3, 3, -1, 0, \ldots) \sim 0\) implies

\[(0, -1, 3, 3, -1, 0, \ldots) \sim 0.\]

Note \((0, -1, 3, 3, -1, 0, \ldots)\) results from \((-1, 3, 3, -1, 0, \ldots)\) by treating (or “relabeling”) generation \(t\) as \(t - 1\), for \(t \geq 1\).
Meaning of ISTAT:

ISTAT says that if $x \sim \theta$ then

$$x' = (\theta, \ldots, \theta, x) \sim x.$$

T times

- x' results from x by a relabeling of agents’ names: $x'_t = x_{t-1}$ ($t \geq T + 1$).
- This is a relabeling of generations $t = T + 1, T + 2, \ldots$
- Generations $t = 0, \ldots, T$ receive θ, the same as they would receive under the alternative stream θ.
Notation

- ℓ_1 set of all \textit{absolutely summable} sequences.
- ℓ_∞ set of all \textit{bounded} sequences.
- $1 = (1, 1, \ldots)$
- For $\theta \in \mathbb{R}$, we denote by θ the seq. $\theta 1$.
Notation

\[\|x\|_1 = \sum_{t=0}^{\infty} |x_t| \]

\[\|x\|_\infty = \sup\{|x_t| : t = 0, 1, \ldots\} \]
Ideas in the proofs.

We look at the set $P = \{x \in \ell^\infty : x \succeq 0\}$.

We want to characterize this as having the form:

$$\bigcap_{\delta \in D} \{x : (1 - \delta) \sum_t \delta^t x_t \geq 0\}$$

The rest are details.
Ideas in the proofs.

The set $P = \{ x \in \ell^\infty : x \succeq 0 \}$ is a closed, convex cone.
P is a closed cvx. cone
P is a closed convex cone

Chambers-Echenique
Robust Discounting
By duality, and using cont. at infinity:

\[P = \bigcap_{m \in M} \{ x : x \cdot m \geq 0 \} \]

for some set \(M \) of prob. measures on \(\{0, 1, 2, \ldots\} \).

A multiple-prior representation.
To say something about M, natural approach is:

$$\min m \cdot z$$

s.t. $m \in M$

Solutions are extreme points of M.

Challenge: work with extreme points of M isn’t enough. We need *unique* solutions.
An exposed point of M is a point $m' \in M$ such that there is some x for which $x \cdot m' < x \cdot m$ for all $m \in M\setminus\{m'\}$.

A result of Lindenstrauss and Troyanski in our context:

Theorem

In our context, a weakly compact convex set is the (weakly) closed convex hull of its strongly exposed points (and hence exposed points).
Since M consists of prob measures, any exposed point m' can be chosen with corresponding x satisfying $x \cdot m' = 0$.

Hence for such x (in the maxmin case) $x \sim 0$.
But $x \sim 0$ implies $x + (0, 0, \ldots, 0, x) \sim 0$ by stationarity.

Then since we have indifference, there is also a supporting $m_x \in M$ for which $0 = m_x \cdot x + m_x \cdot (0, 0, \ldots, 0, x) \leq m_x \cdot y$ for all $y \in P$.

Also by stationarity, $(0, 0, \ldots, 0, x) \sim 0$. So:

$$\begin{align*}
(0, 0, \ldots, 0, x) \in P & \implies m_x \cdot (0, 0, \ldots, 0, x) \geq 0 \\
x \in P & \implies m_x \cdot x \geq 0
\end{align*}$$

Conclude $m_x = m$, since x exposes m.
But $x \sim 0$ implies $x + (0, 0, \ldots, 0, x) \sim 0$ by stationarity.

Then since we have indifference, there is also a supporting $m_x \in M$ for which

$$0 = m_x \cdot x + m_x \cdot (0, 0, \ldots, 0, x) \leq m_x \cdot y$$

for all $y \in P$.

Also by stationarity, $(0, 0, \ldots, 0, x) \sim 0$. So:

$$\begin{cases}
(0, 0, \ldots, 0, x) \in P \Rightarrow m_x \cdot (0, 0, \ldots, 0, x) \geq 0 \\
x \in P \Rightarrow m_x \cdot x \geq 0
\end{cases}$$

Conclude $m_x = m$, since x exposes m.
But $x \sim 0$ implies $x + (0, 0, \ldots, 0, x) \sim 0$ by stationarity.

Then since we have indifference, there is also a supporting $m_x \in M$ for which $0 = m_x \cdot x + m_x \cdot (0, 0, \ldots, 0, x) \leq m_x \cdot y$ for all $y \in P$.

Also by stationarity, $(0, 0, \ldots, 0, x) \sim 0$. So:

$$
\begin{align*}
(0, 0, \ldots, 0, x) \in P &\implies m_x \cdot (0, 0, \ldots, 0, x) = 0 \\
x \in P &\implies m_x \cdot x = 0
\end{align*}
$$

Conclude $m_x = m$, since x exposes m.
Let m^T be the “updated” m

$$m^T = \frac{(m(T - 1), m(T), m(T + 1), \ldots)}{m(\{T - 1, \ldots\})}.$$

Then: $0 = m_x \cdot (0, 0, \ldots, 0, x) = m \cdot (0, 0, \ldots, 0, x)$ means that $m^T \cdot x = 0$

Whenever $p \in P$, $(0, 0, \ldots, 0, p) \in P$ (again by stationarity). So $m \cdot (0, 0, \ldots, 0, p) \geq 0$ and thus $m^T \cdot p \geq 0$

Conclude $m^T \in M$.
So $m^T \in M$ and $m^T \cdot x = 0$ gives $m^T = m$ since x exposes m.

Characterizes the geometric distribution.
Karcher and Trannoy (1999); Foster and Mitra (2003); Wakai (2008), Drugeon, Thai and Hanh (2016).

