Paul Samuelson:

What does it mean to say that consumers max. utility?
Revealed Preference

Paul Samuelson:

What does it mean to say that consumers max. utility?

It means that their \textit{behavior} is \textit{as if} they maximize some utility.

\begin{itemize}
 \item behavior \rightarrow observable data.
 \item utility \rightarrow unobservable.
\end{itemize}
Revealed Preference

Characterize data for which *there is some* utility function that could rationalize the data.

- Definition is a test
- ... but it’s useless.
The nature of falsifiable theories

Popper’s theories:

All swans are white: \(\forall s \, W(s) \)
Falsifiable

There exists a black swan: \(\exists s \, B(s) \)
Not falsifiable
Example: Rev. Pref. problem

Axiomatize R, P (revealed preference relations) for which:

$\exists \succeq$ (satisfying some properties) such that

$\forall x \forall y, x R y \rightarrow x \succeq y$ and $x P y \rightarrow x \succ y$
Revealed Preference

A test is an effective “positive axiomatization.”

- A universal description of rationalizable data.
- Should not refer to theoretical objects, but only to observables.
- An algorithm should decide in finite time if data passes test.
Our paper:

Gives a sufficient condition for theory to have an effective positive axiomatization.

- Explains classical rev. pref. theory
- New applications to multiple selves (collective dec. making), Nash eq., and barg.
Main result (informal statement)

If a theory has an effective universal axiomatization assuming its theoretical terms are observable, then it has an effective universal axiomatization that only talks about observables.
Main result (informal statement)

If a theory has an effective universal axiomatization *assuming* its theoretical terms are observable, then it has an effective universal axiomatization that only talks about observables.

So:

- Pretend that we can observe theoretical terms.
- Axiomatize the theory using statements about theoretical terms.
- This can be “projected” onto observables as an effective axiomatization.
Example

Language:
Example

Language: $\mathcal{L} = (\succ)$.
Axioms:
Example

Language: \(\mathcal{L} = (\succ) \).

Axioms:

- transitivity
- completeness
Example

Language: $\mathcal{L} = (\succ)$.
Axioms:
- transitivity
- completeness
Structure:
Example

Language: \(\mathcal{L} = (\succ) \).

Axioms:
- transitivity
- completeness

Structure:
- \((\mathbb{R}, \succ^R)\),
- \((\mathbb{N}, \succ^*)\), \(n \succ^* m\) iff \(n - m > 5\).
Example - 2

Language:
Example - 2

Language: $\mathcal{L} = (\succeq, \succ)$.
Example - 2

Language: \(\mathcal{L} = (\succeq, \succ) \).
Axioms:
Example - 2

Language: $\mathcal{L} = (\succeq, \succ)$.

Axioms:

▫ \succeq satisfies trans. & cplet. (a weak order)
▫ \succ strict part of \succeq
Example - 2

Language: \(\mathcal{L} = (\succeq, \succ) \).

Axioms:
- \(\succeq \) satisfies trans. & cplet. (a weak order)
- \(\succ \) strict part of \(\succeq \)

Structure:
Example - 2

Language: \(\mathcal{L} = (\succeq, \succ) \).

Axioms:

\(\succeq \) satisfies trans. & cplet. (a weak order)

\(\succ \) strict part of \(\succeq \)

Structure:

\((\mathbb{R}, \geq^R, >^R) \),

\((\mathbb{N}, \geq^*, >^*) \), \(\geq^* = \geq^\mathbb{N} \), \(n >^* m \) iff \(m - n > 5 \).
Game Theory

Nash bargaining: $\mathcal{L} = \langle F, \in \rangle$
Normal-form games: $\mathcal{L} = \langle S_1, \ldots, S_n, C, \in \rangle$
In general:

- A *language* \mathcal{L} is a list of relation symbols.
- A *axiom* is a logical sentence in \mathcal{L}.
- *Universal axioms* are those with \forall quantification at the beginning of the sentence.
- A *structure* is a set together with an interpretation of each symbol in \mathcal{L}.
Axioms

Axioms are statements made using symbols in the language. Examples of (first order) axioms using symbols P, R, \succ, \succeq, O.
Axioms are statements made using symbols in the language. Examples of (first order) axioms using symbols $P, R, \succeq, \preceq, O$

- Completeness: $\forall x \forall y (x \succeq y) \lor (y \succeq x)$
Axioms

Axioms are statements made using symbols in the language. Examples of (first order) axioms using symbols P, R, \succ, \succeq, O

- Completeness: $\forall x \forall y (x \succeq y) \lor (y \succeq x)$
- Transitivity: $\forall x \forall y \forall z (x \succeq y) \land (y \succeq z) \rightarrow (x \succeq z)$
Axioms

Axioms are statements made using symbols in the language. Examples of (first order) axioms using symbols P, R, \succ, \succeq, O

- Completeness: $\forall x \forall y (x \succeq y) \lor (y \succeq x)$
- Transitivity: $\forall x \forall y \forall z (x \succeq y) \land (y \succeq z) \rightarrow (x \succeq z)$
- Nonsatiation: $\forall x \exists y (y \succ x)$
Axioms

Axioms are statements made using symbols in the language. Examples of (first order) axioms using symbols P, R, \succ, \succeq, O

- Completeness: $\forall x \forall y (x \succeq y) \lor (y \succeq x)$
- Transitivity: $\forall x \forall y \forall y (x \succeq y) \land (y \succeq z) \rightarrow (x \succeq z)$
- Nonsatiation: $\forall x \exists y (y \succ x)$
- Rationalization: $\forall x \forall y (x R y) \rightarrow (x \succeq y)$
Axioms

Axioms are statements made using symbols in the language. Examples of (first order) axioms using symbols P, R, \succ, \succeq, O

- Completeness: $\forall x \forall y (x \succeq y) \lor (y \succeq x)$
- Transitivity: $\forall x \forall y \forall z (x \succeq y) \land (y \succeq z) \rightarrow (x \succeq z)$
- Nonsatiation: $\forall x \exists y (y \succ x)$
- Rationalization: $\forall x \forall y (x R y) \rightarrow (x \succeq y)$
- Optimality: $\forall x O(x) \leftrightarrow \forall y (x R y)$
Universal axioms are those with universal (\forall) quantification, coming at the beginning of the sentence:

- $\forall x \forall y (x \succeq y) \lor (y \succeq x)$ is universal.
- $\forall x \exists y (x \succ y)$ is not.
- $\forall x (O(x) \leftrightarrow \forall y (x R y))$ is not.
What is a theory?

Given a language \mathcal{L}. A *theory* is a class of structures of \mathcal{L} that is closed under isomorphism.

Example: Language $\langle \succeq, \succ \rangle$ and theory of utility maximization.
Main Result

Two languages, \mathcal{L} and \mathcal{F}, where $\mathcal{F} = (R_1, \ldots, R_N)$ and $\mathcal{L} = (R_1, \ldots, R_N, Q_1, \ldots, Q_K)$.

Symbols R_i or Q_i for k-ary relations.
Main Result

Two languages, \(\mathcal{L} \) and \(\mathcal{F} \), where

\[\mathcal{F} = (R_1, \ldots, R_N) \]
\[\mathcal{L} = (R_1, \ldots, R_N, Q_1, \ldots, Q_K) \]

Symbols \(R_i \) or \(Q_i \) for \(k \)-ary relations.

Choice example: \(\mathcal{F} = (R, P) \) and \(\mathcal{L} = (R, P, \preceq, \succ) \). Language \(\mathcal{F} \): observables, language \(\mathcal{L} \): (observables and unobservables).
Main Result

Recall $\mathcal{F} \subseteq \mathcal{L}$.

Let T be an \mathcal{L}-theory.

$F(T)$ is the class of all \mathcal{F}-structures $(X, R_1^X, \ldots, R_N^X)$ for which there exist Q_1^X, \ldots, Q_K^X s.t.

$$(X, R_1^X, \ldots, R_N^X, Q_1^X, \ldots, Q_K^X) \in T.$$

$F(T)$ is a projection of \mathcal{L}-theory T onto language \mathcal{F}.

Revealed Preference Example

Two languages $\mathcal{F} \subseteq \mathcal{L}$:
$\mathcal{F} = (R, P)$, and $\mathcal{L} = (R, P, \succ, \succeq)$.
Revealed Preference Example

Two languages $\mathcal{F} \subseteq \mathcal{L}$:
$\mathcal{F} = (R, P)$, and $\mathcal{L} = (R, P, \succ, \succeq)$.

T: \mathcal{L}-theory of structures $(X, R^X, P^X, \succeq^X, \succ^X)$ for which
1. \succeq^X is a weak order
2. \succ^X is its strict part
3. $R^X \subseteq \succeq^X$
4. $P^X \subseteq \succ^X$.
Revealed Preference Example

Two languages $\mathcal{F} \subseteq \mathcal{L}$:
$\mathcal{F} = (R, P)$, and $\mathcal{L} = (R, P, \succ, \succeq)$.

T: \mathcal{L}-theory of structures $(X, R^X, P^X, \succeq^X, \succ^X)$ for which
1. \succeq^X is a weak order
2. \succ^X is its strict part
3. $R^X \subseteq \succeq^X$
4. $P^X \subseteq \succ^X$.

$F(T)$ is the \mathcal{F}-theory of all structures (X, R^X, Q^X) for which there exists \succ^X, \succeq^X for which 1-4 is satisfied.
Main result

For languages \(\mathcal{F} \subseteq \mathcal{L} \), and \(\mathcal{L} \)-axioms \(\Sigma \), the set of \(\mathcal{F} \)-consequences of \(\Sigma \) is the collection of all logical consequences of \(\Sigma \) involving only symbols from \(\mathcal{F} \).
Main result

For languages $\mathcal{F} \subseteq \mathcal{L}$, and \mathcal{L}-axioms Σ, the set of \mathcal{F}-consequences of Σ is the collection of all logical consequences of Σ involving only symbols from \mathcal{F}.

Theorem

Suppose that T is a universally axiomatizable \mathcal{L}-theory, and that $\mathcal{F} \subseteq \mathcal{L}$. Then $F(T)$ is a universally axiomatizable \mathcal{F}-theory, and is axiomatized by the set of all universal \mathcal{F}-consequences of T.
Example

Let $\mathcal{F} = (R, P)$, and let $\mathcal{L} = (R, P, \succ, \succeq)$.

T: \mathcal{L}-theory of structures $(X, R^X, P^X, \succeq^X, \succ^X)$ for which

1. \succeq^X is a weak order
2. \succ^X is its strict part
3. $R^X \subseteq \succeq^X$
4. $P^X \subseteq \succ^X$.

Has axiomatization:

1. $\forall x \forall y (\succeq (x, y) \lor \succeq (y, x))$
2. $\forall x \forall y (\succ (x, y) \leftrightarrow (\succeq (x, y) \land \neg \succeq (y, x)))$
3. $\forall x \forall y \forall z (\succeq (x, y) \land \succeq (y, z)) \rightarrow \succeq (x, z)$
4. $\forall x \forall y (R(x, y) \rightarrow \succeq (x, y))$
5. $\forall x \forall y (P(x, y) \rightarrow \succ (x, y))$
The Strong Axiom of Revealed Preference: For every k,

$$\forall x_1 \ldots \forall x_k \neg \bigwedge_{i=1}^{k} \left(x_i \ Q_i \ x_{(i+1) \ mod \ k} \right)$$

where for all i, $Q_i \in \{R, P\}$, and for at least one $i \in \{1, \ldots, k\}$, $Q_i = P$.
Remarks on proof.

Any \mathcal{F}-consequence of T is satisfied by $F(T)$, and if an \mathcal{F} axiom is true for $F(T)$, it is true for T (and hence an \mathcal{F} consequence).

Main difficulty is in establishing that $F(T)$ is axiomatizable. Need not necessarily be true.
Remarks on proof.

Proof relies on a result of Tarski, which characterizes universally axiomatizable theories. Also relies on some form of choice (Szpirajn’s theorem is a corollary of our result).

Important: In general, $F(T)$ need not be axiomatizable, even if T is. Universality of T is critical.
Recursive enumerability

A set of axioms is **recursively enumerable** if there is an algorithm for listing them out, one by one.

Corollary

*If T is universally and recursively enumerably axiomatizable, then so is $F(T)$.***
Fagin’s Theorem

$F(T)$ is in class NP if there is a non-deterministic Turing machine which, in poly. time, given any \mathcal{F}-structure \mathcal{M}, tells us whether $\mathcal{M} \in F(T)$.

Theorem

Suppose that T is a finitely axiomatized \mathcal{L} theory. Then $F(T)$ is in NP.
Applications

- Multiple selves
- Revealed game theory
- Group preferences (Pareto relation, majority rule, etc)
- Choice theory
Multiple selves, or group preferences

Observe relation R. Hypothesize that R is generated by given finite set of agents N and given social choice rule f (satisfying neutrality and IIA).

Agents hypothesized to have “rational” preferences.

This theory is universally and r.e. axiomatizable.
Special case: Pareto extension relation on N agents

Observe \tilde{P}.

Hypothesize: \(\exists P \exists R_i \exists P_i \) such that:

1. \(\forall x \forall y, x P y \iff \bigwedge_{i \in N} x P_i y \)
2. \(\forall x \forall y, x \tilde{P} y \rightarrow x P y \)
3. \(R_i \) weak orders, and \(P_i \) its strict part.
 1. \(\forall x \forall y, x R_i y \lor y R_i x \)
 2. \(\forall y \forall y \forall z, x R_i y \land y R_i z \rightarrow x R_i z \)
 3. \(\forall x \forall y, x P_i y \iff x R_i y \land \neg y R_i x \)

Axiomatization is known for the case \(|N| = 2 \).
Special case: Pareto extension relation on N agents

Observe \tilde{P}.

Hypothesize: $\exists P \exists R_i \exists P_i$ such that:

- $\forall x \forall y, x P y \leftrightarrow \bigwedge_{i \in N} x P_i y$
- $\forall x \forall y, x \tilde{P} y \to x P y$
- R_i weak orders, and P_i its strict part.
 - $\forall x \forall y, x R_i y \lor y R_i x$
 - $\forall y \forall y \forall z, x R_i y \land y R_i z \to x R_i z$
 - $\forall x \forall y, x P_i y \leftrightarrow x R_i y \land \neg y R_i x$

Axiomatization is known for the case $|N| = 2$.
Related Literature

- Simon (1985) (and other papers by H. Simon)
- Boland
- Mongin
- Chambers-Echenique-Shmaya
- Brown-Kubler (and Brown-Matzkin)