Marginal consistency of constraint-based causal learning

Anna Roumpelaki, Giorgos Borboudakis, Sofia Triantafillou and Ioannis Tsamardinos

University of Crete, Greece.

Constraint-based Causal Learning

Measure X_1, \ldots, X_8

X ₁	X ₂	X ₃	X_4	X ₅	X ₆	X ₇	X ₈

Constraint-based Causal Learning

Measure X_1, \ldots, X_8

X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X ₇	X ₈

Constraint-based Causal Learning

Measure X_1, \ldots, X_8

X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X ₇	X ₈

How important is the choice of variables in learning causal relationships?

Would you have learnt the same relationships if you had chosen a subset of the variables?

Maximal Ancestral Graphs

- Maximal Ancestral Graphs
- Capture the conditional independencies of the joint probability P over a set of variables under Causal Markov and Faithfulness conditions
- Directed edges denote causal ancestry.
- Bi-directed edges denote confounding.
- No directed cycles.
- No almost directed cycles $A \rightarrow B \rightarrow \cdots \rightarrow C \leftrightarrow B$.

- Are closed under marginalization.
 - G = (V, E) is a MAG, $G[_L = (V \setminus L, E')$ is also a MAG.
- Can also handle selection (not here).

Partially Oriented Ancestral Graphs

- Summarize pairwise features of a Markov equivalence class of MAGs.
- Circles denote ambiguous endpoints.
- Can be learnt from data using FCI.
- FCI:
 - Sensitive to error propagation.
 - Order-dependent (if you change the order of variables in the data set you get a different result).
- Extensions of FCI [4]:
 - Order independent (iFCI) [1]:
 - output does not depend on the order of the variables.
 - Conservative FCI (cFCI) [3]:
 - Makes additional tests of independence for more robust orientations.
 - Forgoes orientations that are not supported by all tests.
 - Majority rule (mFCI) [3]:
 - conservative FCI that orients ambiguous triplets based on majority of test results for each triplet.

What happens when you marginalize out variables?

What happens when you marginalize out variables?

What happens when you marginalize out variables?

- $(X, Y) \in NAnc_P$: X is **not** an ancestor of Y in all MAGs represented by P.
- *X* has **no potentially directed** path to *Y*.

- $(X, Y) \in NAnc_P$: X is **not** an ancestor of Y in all MAGs represented by P.
- *X* has **no potentially directed** path to *Y*.
- (D, A), (D, B), (D, C)

PAG P

- $(X, Y) \in NAnc_P$: X is **not** an ancestor of Y in all MAGs represented by P
- *X* has **no potentially directed** path to *Y*.
- (D, A), (D, B), (D, C)
- (E, A), (E, B), (E, C), (E, D)

- $(X, Y) \in NAnc_P$: X is **not** an **ancestor** of Y in all MAGs represented by P
- *X* has **no potentially directed** path to *Y*.
- (D, A), (D, B), (D, C)
- (E, A), (E, B), (E, C), (E, D)
- (F, A), (F, B), (F, C), (F, D), (F, E)

- $(X, Y) \in NAnc_P$: X is an ancestor of Y in all MAGs represented by P.
- Take the **transitive closure** of directed edges in the PAG.

- $(X, Y) \in NAnc_P$: X is an ancestor of Y in all MAGs represented by P.
- Take the **transitive closure** of directed edges in the PAG.
- (D, E), (D, F)
- (*E*,*F*)

- $(X, Y) \in NAnc_P$: X is an ancestor of Y in all MAGs represented by P.
- Take the **transitive closure** of directed edges in the PAG.
- (D, E), (D, F)
- (*E*,*F*)

- $(X, Y) \in NAnc_P$: X is an ancestor of Y in all MAGs represented by *P*.
- Take the **transitive closure** of directed edges in the PAG.
- (D, E), (D, F)
 (E, F)

Some relations are not so obvious!

A causes D in all MAGs repr. by P.

Theorem:

If (X,Y) is not in the transitive closure of PAG P, X is an ancestor of Y if and only if $\exists U,V, U \neq V$ such that:

- 1. There are uncovered potentially directed paths from X to Y via U and V in P, and
- 2. <U,X,V> is an unshielded definite non-collider in P.

- $(X, Y) \in NAnc_P$: X is an ancestor of Y in all MAGs represented by P.
- Take the **transitive closure** of directed edges in the PAG.
- (D, E), (D, F)
- (*E*,*F*)
- (A, D), (A, E), (A, F)

Ambiguous relationships

- If $(X, Y) \notin Anc_P \cup NAnc_P$: Ambiguous relationship.
- If you marginalize out variables, (non) ancestral relationships can become ambiguous.

Marginal Consistency

Under perfect statistical knowledge:

- Ancestral relations in the marginal are ancestral in the original PAG (over $V \setminus L$)
 - $Anc(P[_L) \subset Anc(P)_{V \setminus L} (d=0, e=0)$
- Non-ancestral relations in the marginal nonancestral in the original PAG (over $V \setminus L$)
 - $NAnc(P[_L) \subset NAnc(P)_{V \setminus L}$ (c=0, f=0)

In reality:

.

- Ancestral relations in the marginal can be:
 - non-ancestral in the original PAG (d).
 - ambiguous in the original PAG (e)
- Non-ancestral relations in the marginal can be:
 - Ancestral in the original PAG (c).
 - ambiguous in the original PAG (f)

Experiments

- 50 DAGs of 20 variables.
- Graph density: 0.1 and 0.2.
- Continuous data sets with 1000 samples.
- 100 random marginals of 18 and 15 variables.
- Algorithms used (pcalg) [2]:
 - FCI
 - iFCl
 - mFCl

Results (Ancestral relationships)

Ancestral in both.

Ancestral in marginal nonancestral in original. Ancestral in marginal ambiguous in original.

Results (Non Ancestral Relationships)

Non-Ancestral in both.

Non-Ancestral in marginal, ancestral in original.

Non-Ancestral in marginal ambiguous in original.

Conclusions

- Constraint-based methods are sensitive to marginalization.
- Consistency of causal predictions drops for denser networks/smaller marginals.
- Non-causal predictions are very consistent.
- Majority rule FCI outperforms other FCI variants.

Ranking based on marginal consistency

- Can you use marginal consistency to find more robust predictions?
- Are predictions that are frequent in the marginals more robust?
- Compare with bootstrapping.

Results

Conclusion/Future work

- Ranking by marginal consistency can help identify robust causal predictions.
- Bootstrapping is more successful in ranking causal predictions (by a small margin).
- Ranking by marginals can become much faster by caching tests of independence.
- Try it for much larger data sets (number of variables).
- Combine with bootstrapping.
- Try to identify a marginal that maximizes marginal consistency.
- Try to identify a graph that is consistent for more marginals.

References

1. Diego Colombo and Marloes H Maathuis. Order-independent constraint-based causal structural learning. JMLR 2014.

2. Markus Kalisch, Martin Mächler, Diego Colombo, Marloes H Maathuis, and Peter Bühlmann. Causal inference using graphical models with the R package pcalg. JSS 2012.

3. Joseph Ramsey, Jiji Zhang, and Peter Spirtes. Adjacency-faithfulness and conservative causal inference UAI 2006.

4. Peter Spirtes, Clark Glymour, and Richard Scheines. Causation, Prediction, and Search. MIT Press, 2000.