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(probabilistic) marginal problem

Let S := {X1, . . . ,Xd} be random variables and Sj ⊂ S

Question:

Given the marginal distributions PSj , is there a joint distribution
PX1,...,Xd

having PSj as marginal distributions?

Vorobev: Consistent families of measures and their extensions (1962), Kellerer: Maßtheoretische Marginalprobleme

(1964)
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Simple negative example

• PX ,Y such that cor(X ,Y ) ≈ 1

• PY ,Z such that cor(Y ,Z ) ≈ 1

• PX ,Z such that cor(X ,Z ) ≈ −1

PX ,Y ,Z cannot exist because covariance matrix would not be
positive
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Causal marginal problem

(vague formulation)

Given distributions PSj with causal model Mj , is there a
distribution PX1,...,Xd

with causal model M whose marginals on Sj
coincide with Mj?
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Vague because

• ‘causal model’ not defined (DAG, MAG, PAG, structural
equation model, semi-Markovian model, potential outcome,
chain graph...)

• definition of ‘marginalization of a causal model’ not obvious

Note: marginal problems with focus on conditional independences
have been considered elsewhere, e.g. Tsamardinos, Triantafillou,
Lagani: Towards Integrative Causal Analysis of Heterogeneous
Data Sets and Studies, JMLR 2012
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Examples instead of definitions...

Z → Y can be the marginalization of

X

Z

Y
or

X

Z

Y
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DAGs not closed under marginalization

usually, marginalization of

X

Z

Y

to X ,Y is no longer a DAG because X ,Y are confounded

then, marginal is a semi-Markovian model, for instance
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Defining marginalization of a causal model

(for a special case)

Definition:

Given a causal DAG with nodes X1, . . . ,Xd and joint distribution
PX1,...,Xd

. The DAG Xi → Xj is said to be a valid marginalization if
p(xj |do(xi )) = p(xj |xi ).

Note: here the trivial case p(xj |do(xi )) = p(xj) = p(xj |do(xi )) is
also allowed
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Example for a causal marginal problem

Given:

• PX ,Y with causal DAG X → Y

• PZ ,X with causal DAG Z → X

• PZ ,Y wih causal DAG Z → Y

can they be obtained from marginalizing some PX ,Y ,Z with DAG

X

Z

Y

?
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1) a natural solution

Let PX ,Y ,PZ ,X ,PZ ,Y be Gaussians such that their covariance
matrices ΣXY ,ΣZY ,ΣZ ,X yield a positive matrix ΣX ,Y ,Z

(solving the probabilistic marginal problem)

If the partial correlation ρXY |Z vanishes (can be checked from
pairwise covariances alone), the DAG

X

Z

Y

with Gaussian PX ,Y ,Z solves the causal marginal problem
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Generalization to non-Gaussians?

The DAG

X

Z

Y

is only possible if

I (Z : Y ) ≤ min{I (X : Y ), I (Z : X )}

(data processing inequality, follows from I (Z : Y |X ) = 0)

necessary condition, I’m pretty sure it’s not sufficient
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2) a boring solution

If PZX = PZPX the DAG

X

Z

Y

solves our causal marginal problem
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3) a paradox solution

‘improper confounding’

X

Z

Y

• let Z contain 2 independent bits, one influencing X and one
influencing Y .

• relabel the states Z = 00, 01, 10, 11 as Z = 1, 2, 3, 4 to make
the example more serious.

• clearly p(y |do(x)) = p(y |x).

Z is a confounder in the sense that it really influences both X and
Y , but it does not really confound the influence of X on Y
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Inconsistent causal marginals

Let PX ,Y ,PZ ,X ,PZ ,Y be Gaussians such that their covariance
matrices ΣXY ,ΣZY ,ΣZ ,X yield a positive matrix ΣX ,Y ,Z

(solving the probabilistic marginal problem)

If the partial correlation ρXY |Z does not vanish, the DAG

X

Z

Y

with Gaussian PX ,Y ,Z does not solve the causal marginal problem
because p(y |do(x)) 6= p(y |x)
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Simple marginal problem

• let X ,Y ,Z be binary

• define PX ,Y by

p(x , y) =

{
1
2 − ε for x = y
ε for x 6= y

• p(y , z) and p(x , z) defined similarly with the same ε

• causal models Z → X , X → Y , and Z → Y

Conjecture: inconsistent marginals, at least for small ε
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Question:

What are necessary and sufficient conditions in the
above tripartite case?
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Structural causal marginal problem

Given:

• PX ,Y with structural equation Y = fY (X ,NY )

• PZ ,X with structural equation X = fX (Z ,NX )

• PZ ,Y with structural equation Y = fY (Z ,NY )

Are there structural equations for the DAG

X

Z

Y

that are consistent with the above (even regarding counterfactual
statements)?
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Example with binaries

1 Y = X ⊕ NX with unbiased NX for X → Y (hence X ⊥⊥ Y )

2 X = Z ⊕ NZ with unbiased NZ for Z → X (hence Z ⊥⊥ X )

3 Y = NY with unbiased NY for Z → Y (hence Z ⊥⊥ Y )

counterfactual statements inconsistent:

• for fixed values of NX ,NY ,NZ , inverting Z has no effect on Y
according to (3)

• according to (1) and (2), inverting Z inverts Y
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Applications of the causal marginal problems

Given observations from different data sets with overlapping
variables, do they correspond to the same background conditions?

• if the marginal problem is not solvable they correspond to
different conditions

• causal information can render the extension of marginals to a
joint unique or less ambiguous

causal information helps in putting pieces of the world together
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Science as a puzzle:

putting pieces together without causal information:
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Science as a puzzle...

with causal information:
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