Discovering Dynamical Kinds

Benjamin Jantzen
Department of Philosophy
Virginia Tech
bjantzen@vt.edu
June 29, 2016

IIVVirginiaTech
Invent the Future

Outline

(1) Introduction

(2) Theoretical background

(3) The algorithm
4) Performance of the algorithm
(5) Stochastic causation
(6) Conclusions

Dynamical form

What do these systems have in common?

Dynamical form

What do these systems have in common?

$$
\begin{aligned}
& \ddot{x}+2 \zeta \omega_{0} \dot{x}+\omega_{0}^{2} x=0, \\
& \omega_{0}=\sqrt{\frac{k}{m}}, \zeta=\frac{c}{2 \sqrt{m k}}
\end{aligned}
$$

The traditional view

Dynamical form is either a secondary consideration or a modeling assumption.

The traditional view

Dynamical form is either a secondary consideration or a modeling assumption.

- gather data from a single system

The traditional view

Dynamical form is either a secondary consideration or a modeling assumption.

- gather data from a single system
- (choose a model to parameterize the system)

The traditional view

Dynamical form is either a secondary consideration or a modeling assumption.

- gather data from a single system
- (choose a model to parameterize the system)
- fit a function to particular trajectories or fit a transfer function

The traditional view

Dynamical form is either a secondary consideration or a modeling assumption.

- gather data from a single system
- (choose a model to parameterize the system)
- fit a function to particular trajectories or fit a transfer function
- only after the fact, consider classifying dynamical form

The advantages of directly discerning dynamical kinds

Helpful to know if two or more systems of causally connected variables have the same dynamical form:

The advantages of directly discerning dynamical kinds

Helpful to know if two or more systems of causally connected variables have the same dynamical form:

- could tell if a system exhibits distinct dynamical regimes

The advantages of directly discerning dynamical kinds

Helpful to know if two or more systems of causally connected variables have the same dynamical form:

- could tell if a system exhibits distinct dynamical regimes
- could validate complex computer models

The advantages of directly discerning dynamical kinds

Helpful to know if two or more systems of causally connected variables have the same dynamical form:

- could tell if a system exhibits distinct dynamical regimes
- could validate complex computer models
- data from multiple experiments can be pooled prior to model selection

What it takes to find kinds

Two requirements:

What it takes to find kinds

Two requirements:
(1) a rigorous definition of dynamical kind

What it takes to find kinds

Two requirements:
(1) a rigorous definition of dynamical kind
(2) an empirical test for sameness of dynamical kind

Outline

(1) Introduction
(2) Theoretical background
(3) The algorithm
(4) Performance of the algorithm
(5) Stochastic causation
(6) Conclusions

Outline

(1) Introduction

(2) Theoretical background

(3) The algorithm

4) Performance of the algorithm
(5) Stochastic causation
(6) Conclusions

Dynamical symmetry

Definition (Dynamical symmetry)

Let V be a set of variables. Let σ be an intervention on the variables in Int $\subset V$. The transformation σ is a dynamical symmetry with respect to some index variable $X \in V$ - Int if and only if σ has the following property: for all x_{i} and x_{f}, the final state of the system is the same whether σ is applied when $X=x_{i}$ and then an intervention on X makes it such that $X=x_{f}$, or the intervention on X is applied first, changing its value from x_{i} to x_{f}, and then σ is applied.

Example: Pressure and additive symmetry

Example: Pressure and additive symmetry

$$
\begin{align*}
& p_{1}:=p_{1} \tag{1}\\
& p_{2}:=p_{1}+\rho g h \tag{2}
\end{align*}
$$

Example: Pressure and additive symmetry

$$
\begin{align*}
& p_{1}:=p_{1} \tag{1}\\
& p_{2}:=p_{1}+\rho g h \tag{2}
\end{align*}
$$

p_{1}	p_{2}	h

Example: Pressure and additive symmetry

$$
\begin{align*}
& p_{1}:=p_{1} \tag{1}\\
& p_{2}:=p_{1}+\rho g h \tag{2}
\end{align*}
$$

p_{1}	p_{2}	h
P	P	0

Example: Pressure and additive symmetry

$$
\begin{align*}
& p_{1}:=p_{1} \tag{1}\\
& p_{2}:=p_{1}+\rho g h \tag{2}
\end{align*}
$$

p_{1}	p_{2}	h
P	P	0
$P+c$	$P+c$	0

Example: Pressure and additive symmetry

$$
\begin{align*}
& p_{1}:=p_{1} \tag{1}\\
& p_{2}:=p_{1}+\rho g h \tag{2}
\end{align*}
$$

p_{1}	p_{2}	h
P	P	0
$P+c$	$P+c$	0
$P+c$	$P+c+\rho g h_{f}$	h_{f}

Example: Pressure and additive symmetry

$$
\begin{align*}
& p_{1}:=p_{1} \tag{1}\\
& p_{2}:=p_{1}+\rho g h \tag{2}
\end{align*}
$$

p_{1}	p_{2}	h
P	P	0
$P+c$	$P+c$	0
$P+c$	$P+c+\rho g h_{f}$	h_{f}

$p_{1} \quad p_{2}$
h

Example: Pressure and additive symmetry

$$
\begin{align*}
& p_{1}:=p_{1} \tag{1}\\
& p_{2}:=p_{1}+\rho g h \tag{2}
\end{align*}
$$

p_{1}	p_{2}	h
P	P	0
$P+c$	$P+c$	0
$P+c$	$P+c+\rho g h_{f}$	h_{f}

p_{1}	p_{2}	h
P	P	0

Example: Pressure and additive symmetry

$$
\begin{align*}
& p_{1}:=p_{1} \tag{1}\\
& p_{2}:=p_{1}+\rho g h \tag{2}
\end{align*}
$$

p_{1}	p_{2}	h
P	P	0
$P+c$	$P+c$	0
$P+c$	$P+c+\rho g h_{f}$	h_{f}

p_{1}	p_{2}	h
P	P	0
P	$P+\rho g h_{f}$	h_{f}

Example: Pressure and additive symmetry

$$
\begin{align*}
& p_{1}:=p_{1} \tag{1}\\
& p_{2}:=p_{1}+\rho g h \tag{2}
\end{align*}
$$

p_{1}	p_{2}	h
P	P	0
$P+c$	$P+c$	0
$P+c$	$P+c+\rho g h_{f}$	h_{f}

p_{1}	p_{2}	h
P	P	0
P	$P+\rho g h_{f}$	h_{f}
$P+c$	$P+c+\rho g h_{f}$	h_{f}

Dynamical symmetry with respect to time

Definition (Dynamical symmetry with respect to time)

Let t be the variable representing time, and let V be a set of additional dynamical variables such that $t \notin V$. Let σ be an intervention on the variables in Int $\subset V$. The transformation σ is a dynamical symmetry with respect to time if and only if for all intervals Δt, the final state of the system is the same whether σ is applied at some time t_{0} and the system evolved until $t_{0}+\Delta t$, or the system first allowed to evolve from t_{0} to $t_{0}+\Delta t$ and then σ is applied.

Example: Scaling and exponential growth

A focus on temporal dynamics

- Algorithm described assumes (noisy) data decribing desterministic systems that change through time.

A focus on temporal dynamics

- Algorithm described assumes (noisy) data decribing desterministic systems that change through time.
- Symmetries of differential equations in time familiar from physics.

A focus on temporal dynamics

- Algorithm described assumes (noisy) data decribing desterministic systems that change through time.
- Symmetries of differential equations in time familiar from physics.
- Can be relaxed - nothing special about this sort of dynamics.

Symmetry structure

Definition (Symmetry structure:)
The symmetry structure of a collection of dynamical symmetries, $\Sigma=\left\{\sigma_{i} \mid i=1,2, \ldots\right\}$ is given by the composition function $\circ: \Sigma \times \Sigma \rightarrow \Sigma$.

Dynamical kind

Definition (Dynamical kind)

Two systems are of the same dynamical kind (same dynamical form) iff they have the same symmetry structure.

Outline

(1) Introduction
(2) Theoretical background
(3) The algorithm
4. Performance of the algorithm
(5) Stochastic causation
(6) Conclusions

Overview

(1) collect data for target variable(s) as a function of time, before and after intervention

Overview

(1) collect data for target variable(s) as a function of time, before and after intervention
(2) transform the data to build polynomial models of dynamical symmetries

Overview

(1) collect data for target variable(s) as a function of time, before and after intervention
(2) transform the data to build polynomial models of dynamical symmetries

3 compare symmetries

Phase 1: Sampling

Phase 2: Transformation

Phase 2: Transformation

Phase 2: Transformation

$$
\left.\begin{array}{c}
t \\
{\left[\begin{array}{c}
t \\
t_{0} \\
t_{1} \\
t_{2} \\
\vdots
\end{array}\right.} \\
a_{10} \\
a_{20} \\
a_{20} \\
\vdots
\end{array}\right] \begin{array}{c|c}
t & \tilde{x} \\
\Downarrow & {\left[\begin{array}{c}
t_{0} \\
t_{1} \\
b_{00} \\
t_{20} \\
b_{20} \\
\vdots \\
\vdots
\end{array}\right]} \\
\left\langle\left[\begin{array}{c|c}
x & a_{00} \\
a_{10} & b_{00} \\
a_{20} & b_{20} \\
\vdots & \vdots
\end{array}\right]\right\rangle
\end{array}
$$

Phase 2: Transformation

$$
\begin{gathered}
t \\
{\left[\begin{array}{c|cc}
t_{0} & v_{0} & v_{1} \\
t_{1} & a_{10} & a_{01} \\
t_{2} & a_{20} & a_{21} \\
\vdots & \vdots & \vdots
\end{array}\right]}
\end{gathered} \underset{\downarrow}{\left[\begin{array}{c|cc}
t & v_{0} & v_{1} \\
t_{0} & b_{00} & b_{01} \\
t_{1} & b_{10} & b_{11} \\
t_{2} & b_{20} & b_{21} \\
\vdots & \vdots & \vdots
\end{array}\right]} \begin{gathered}
\| v_{0} \quad v_{1} \\
\tilde{v}_{0} \\
\left\langle\left[\begin{array}{cc|c}
a_{00} & a_{01} & b_{00} \\
a_{10} & a_{11} & b_{10} \\
a_{20} & a_{21} & b_{20} \\
\vdots & \vdots & \vdots
\end{array}\right],\right.
\end{gathered} \begin{array}{ccc|c}
v_{0} & v_{1} & \tilde{v}_{1} \\
\left.\left[\begin{array}{ccc}
a 00 & a_{01} & b_{01} \\
a_{10} & a_{11} & b_{11} \\
a_{20} & a_{21} & b_{21} \\
\vdots & \vdots & \vdots
\end{array}\right]\right\rangle
\end{array}
$$

Phase 3: Comparison

(1) Use 10-fold cross-validation to estimate the error of two models:

Phase 3: Comparison

(1) Use 10-fold cross-validation to estimate the error of two models:

- separate model - one which assumes the systems are of different dynamical kinds and fits separate polynomials to the symmetries of each

Phase 3: Comparison

(1) Use 10-fold cross-validation to estimate the error of two models:

- separate model - one which assumes the systems are of different dynamical kinds and fits separate polynomials to the symmetries of each
- joint model - one which assumes the systems are of the same dynamical kind and pools the data for each initial condition before fitting the symmetries with polynomials

Phase 3: Comparison

(1) Use 10-fold cross-validation to estimate the error of two models:

- separate model - one which assumes the systems are of different dynamical kinds and fits separate polynomials to the symmetries of each
- joint model - one which assumes the systems are of the same dynamical kind and pools the data for each initial condition before fitting the symmetries with polynomials
(2) Compare the error of the two models:

Phase 3: Comparison

(1) Use 10-fold cross-validation to estimate the error of two models:

- separate model - one which assumes the systems are of different dynamical kinds and fits separate polynomials to the symmetries of each
- joint model - one which assumes the systems are of the same dynamical kind and pools the data for each initial condition before fitting the symmetries with polynomials
(2) Compare the error of the two models:
- If error joint $^{\ggg}$ error $_{\text {separate }}$ then conclude they are different types;

Phase 3: Comparison

(1) Use 10-fold cross-validation to estimate the error of two models:

- separate model - one which assumes the systems are of different dynamical kinds and fits separate polynomials to the symmetries of each
- joint model - one which assumes the systems are of the same dynamical kind and pools the data for each initial condition before fitting the symmetries with polynomials
(2) Compare the error of the two models:
- If error joint $^{\text {\gg }}$ error ${ }_{\text {separate }}$ then conclude they are different types;
- Else, conclude they are the same dynamical kind.

Outline

(1) Introduction

(2) Theoretical background

(3) The algorithm
4) Performance of the algorithm
(5) Stochastic causation
(6) Conclusions

Simulated data

(1) Generalized logistic growth:

$$
\dot{x}=r x\left(1-\frac{x}{K}\right) \text { vs. } \dot{x}=r x\left(1-\left(\frac{x}{K}\right)^{\beta}\right)
$$

Simulated data

(1) Generalized logistic growth:

$$
\dot{x}=r x\left(1-\frac{x}{K}\right) \text { vs. } \dot{x}=r x\left(1-\left(\frac{x}{K}\right)^{\beta}\right)
$$

Simulated data

(1) Generalized logistic growth:

$$
\dot{x}=r x\left(1-\frac{x}{K}\right) \text { vs. } \dot{x}=r x\left(1-\left(\frac{x}{K}\right)^{\beta}\right)
$$

Symmetries $(\beta=1): \sigma_{p}\left(x_{\Delta_{t}}\right)=\frac{K x}{\left(1-e^{-p}\right) x+e^{-p K}}$

Simulated data

(1) Generalized logistic growth:

$$
\dot{x}=r x\left(1-\frac{x}{K}\right) \text { vs. } \dot{x}=r x\left(1-\left(\frac{x}{K}\right)^{\beta}\right)
$$

Symmetries $(\beta=1): \sigma_{p}\left(x_{\Delta_{t}}\right)=\frac{K x}{\left(1-e^{-p}\right) x+e^{-p K}}$
(2) Two-species Lotka-Volterra competition:

$$
\begin{aligned}
& \dot{x}_{1}=r_{1} x_{1}\left(1-\left(x_{1}+\alpha_{12} x_{2}\right) / K_{1}\right) \\
& \dot{x}_{2}=r_{2} x_{2}\left(1-\left(x_{2}+\alpha_{21} x_{1}\right) / K_{2}\right)
\end{aligned}
$$

Simulated data

(1) Generalized logistic growth:

$$
\dot{x}=r x\left(1-\frac{x}{K}\right) \text { vs. } \dot{x}=r x\left(1-\left(\frac{x}{K}\right)^{\beta}\right)
$$

Symmetries $(\beta=1): \sigma_{p}\left(x_{\Delta_{t}}\right)=\frac{K x}{\left(1-e^{-p}\right) x+e^{-p K}}$
(2) Two-species Lotka-Volterra competition:

$$
\begin{aligned}
& \dot{x}_{1}=r_{1} x_{1}\left(1-\left(x_{1}+\alpha_{12} x_{2}\right) / K_{1}\right) \\
& \dot{x}_{2}=r_{2} x_{2}\left(1-\left(x_{2}+\alpha_{21} x_{1}\right) / K_{2}\right)
\end{aligned}
$$

Simulated data

(1) Generalized logistic growth:

$$
\dot{x}=r x\left(1-\frac{x}{K}\right) \text { vs. } \dot{x}=r x\left(1-\left(\frac{x}{K}\right)^{\beta}\right)
$$

Symmetries $(\beta=1): \sigma_{p}\left(x_{\Delta_{t}}\right)=\frac{K x}{\left(1-e^{-p}\right) x+e^{-p} K}$
(2) Two-species Lotka-Volterra competition:

$$
\begin{aligned}
& \dot{x}_{1}=r_{1} x_{1}\left(1-\left(x_{1}+\alpha_{12} x_{2}\right) / K_{1}\right) \\
& \dot{x}_{2}=r_{2} x_{2}\left(1-\left(x_{2}+\alpha_{21} x_{1}\right) / K_{2}\right)
\end{aligned}
$$

Symmetries: $f\left(r_{2} / r_{1}\right)$

Accuracy: single dependent variable

(a), (b) generalized logistic growth, different dynamical kinds
(c) accuracy discerning different kinds
(d), (e) generalized logistic growth, same dynamical kind
(f) accuracy detecting similarity of kind

Accuracy: two dependent variables

(a), (b) Lotka-Volterra competition, different dynamical kinds
(c) accuracy discerning different kinds
(d), (e) Lotka-Volterra competition, same dynamical kind
(f) accuracy detecting similarity of kind

Noise and normality

(a) Accuracy as a function of standard deviation of normally distributed noise for logistic growth models.
(b) Accuracy as a function of the α-parameter of the skew normal distribution for logistic growth systems.
(c) Accuracy versus standard deviation of normally distributed noise for two-species Lotka-Volterra systems.
(d) Accuracy versus α for Lotka-Volterra systems.

Outline

(1) Introduction

(2) Theoretical background

(3) The algorithm
4) Performance of the algorithm
(5) Stochastic causation
(6) Conclusions

Dynamical symmetry

Definition (Dynamical symmetry)

Let V be a set of variables. Let σ be an intervention on the variables in Int $\subset V$. The transformation σ is a dynamical symmetry with respect to some index variable $X \in V$ - Int if and only if σ has the following property: for all x_{i} and x_{f}, the final probability distribution over V is the same whether σ is applied when $E[X]=x_{i}$ and then an intervention on X makes it such that $E[X]=x_{f}$, or the intervention on X is applied first, changing its expected value from x_{i} to x_{f}, and then σ is applied.

The two variable case

Suppose

$$
\begin{aligned}
& x:=x+\epsilon \\
& y:=f\left(x ; y_{0}\right)+\eta
\end{aligned}
$$

where

$$
f\left(x_{0} ; y_{0}\right)=y_{0}
$$

The two variable case

Suppose

$$
\begin{aligned}
x & :=x+\epsilon \\
y & :=f\left(x ; y_{0}\right)+\eta
\end{aligned}
$$

where

$$
\begin{gathered}
f\left(x_{0} ; y_{0}\right)=y_{0} \\
p(x, y)=p_{x}(x) p_{\eta}(y \mid x)=p_{x}(x) p_{\eta}\left(y-f\left(x ; y_{0}\right)\right)
\end{gathered}
$$

The two variable case

Suppose

$$
\begin{aligned}
& x:=x+\epsilon \\
& y:=f\left(x ; y_{0}\right)+\eta
\end{aligned}
$$

where

$$
\begin{gathered}
f\left(x_{0} ; y_{0}\right)=y_{0} \\
p(x, y)=p_{x}(x) p_{\eta}(y \mid x)=p_{x}(x) p_{\eta}\left(y-f\left(x ; y_{0}\right)\right)
\end{gathered}
$$

To satisfy the symmetry condition for transformation, σ, must have:

$$
p\left(x_{0}+\delta x\right) p_{\eta}\left(y-f\left(x_{0}+\delta ; \sigma\left(y_{0}\right)\right)\right)=p\left(x_{0}+\delta\right) p_{\eta}\left(y-\sigma\left(f\left(x_{0}+\delta ; y_{0}\right)\right.\right.
$$

The two variable case

Suppose

$$
\begin{aligned}
& x:=x+\epsilon \\
& y:=f\left(x ; y_{0}\right)+\eta
\end{aligned}
$$

where

$$
\begin{gathered}
f\left(x_{0} ; y_{0}\right)=y_{0} \\
p(x, y)=p_{x}(x) p_{\eta}(y \mid x)=p_{x}(x) p_{\eta}\left(y-f\left(x ; y_{0}\right)\right)
\end{gathered}
$$

To satisfy the symmetry condition for transformation, σ, must have:

$$
p\left(x_{0}+\delta x\right) p_{\eta}\left(y-f\left(x_{0}+\delta ; \sigma\left(y_{0}\right)\right)\right)=p\left(x_{0}+\delta\right) p_{\eta}\left(y-\sigma\left(f\left(x_{0}+\delta ; y_{0}\right)\right.\right.
$$

$$
\left.f\left(x_{0}+\delta ; \sigma\left(y_{0}\right)\right)\right)=\sigma\left(f\left(x_{0}+\delta ; y_{0}\right)\right.
$$

Recasting the logistic growth example

$$
\begin{aligned}
x & :=x+\epsilon \\
x_{\Delta t}\left(x ; y_{0}\right) & :=\frac{\left(K-x_{0}\right) y_{0} x}{\left(K-y_{0}\right) x_{0}+\left(y_{0}-x_{0}\right) x}
\end{aligned}
$$

where $y_{0}=x_{\Delta t}\left(x_{0}\right)$.

Recasting the logistic growth example

$$
\begin{aligned}
x & :=x+\epsilon \\
x_{\Delta t}\left(x ; y_{0}\right) & :=\frac{\left(K-x_{0}\right) y_{0} x}{\left(K-y_{0}\right) x_{0}+\left(y_{0}-x_{0}\right) x}
\end{aligned}
$$

where $y_{0}=x_{\Delta t}\left(x_{0}\right)$.
Symmetry condition:

$$
\sigma\left(x_{\Delta t}\left(x_{0}+\delta ; y_{0}\right)=x_{\Delta t}\left(x_{0}+\delta ; \sigma\left(y_{0}\right)\right)\right.
$$

Recasting the logistic growth example

$$
\begin{aligned}
x & :=x+\epsilon \\
x_{\Delta t}\left(x ; y_{0}\right) & :=\frac{\left(K-x_{0}\right) y_{0} x}{\left(K-y_{0}\right) x_{0}+\left(y_{0}-x_{0}\right) x}
\end{aligned}
$$

where $y_{0}=x_{\Delta t}\left(x_{0}\right)$.
Symmetry condition:

$$
\begin{gathered}
\sigma\left(x_{\Delta t}\left(x_{0}+\delta ; y_{0}\right)=x_{\Delta t}\left(x_{0}+\delta ; \sigma\left(y_{0}\right)\right)\right. \\
\sigma_{p}\left(x_{\Delta_{t}}\right)=\frac{K x}{\left(1-e^{-p}\right) x+e^{-p} K}
\end{gathered}
$$

Outline

(1) Introduction

(2) Theoretical background

(3) The algorithm

4) Performance of the algorithm
(5) Stochastic causation
(6) Conclusions

Summary

Summary

- It is possible to directly assess sameness of dynamical kind.

Summary

- It is possible to directly assess sameness of dynamical kind.
- Can be done with no prior knowledge or assumptions about the underlying dynamics.

Summary

- It is possible to directly assess sameness of dynamical kind.
- Can be done with no prior knowledge or assumptions about the underlying dynamics.
- Method relies on comparing information about dynamical symmetries implicit in sets of trajectories.

Summary

- It is possible to directly assess sameness of dynamical kind.
- Can be done with no prior knowledge or assumptions about the underlying dynamics.
- Method relies on comparing information about dynamical symmetries implicit in sets of trajectories.
- The algorithm presented is accurate and robust under noise and variation of the underlying error distribution.

Summary

- It is possible to directly assess sameness of dynamical kind.
- Can be done with no prior knowledge or assumptions about the underlying dynamics.
- Method relies on comparing information about dynamical symmetries implicit in sets of trajectories.
- The algorithm presented is accurate and robust under noise and variation of the underlying error distribution.
- The algorithm presented can be extended to stochastic causation.

Automated discovery

- The algorithm presented is a key component of fully automated discovery.

Automated discovery

- The algorithm presented is a key component of fully automated discovery.
- Most kinds are useless for finding law-like regularities.

Automated discovery

- The algorithm presented is a key component of fully automated discovery.
- Most kinds are useless for finding law-like regularities.
- Dynamical kinds are almost guaranteed to be rich in such regularities.

Automated discovery

- The algorithm presented is a key component of fully automated discovery.
- Most kinds are useless for finding law-like regularities.
- Dynamical kinds are almost guaranteed to be rich in such regularities.
- Comparing sameness of dynamical kind is critical for automatically choosing a domain for scientific investigation.

Automated discovery

- The algorithm presented is a key component of fully automated discovery.
- Most kinds are useless for finding law-like regularities.
- Dynamical kinds are almost guaranteed to be rich in such regularities.
- Comparing sameness of dynamical kind is critical for automatically choosing a domain for scientific investigation.
- The EUGENE project is aimed at automating this and other components of scientific inference that have resisted algorithmic solution.

Acknowledgments

NSF support

Funding for this research was provided by the NSF under award number 1454190.

Acknowledgments

The following people have contributed to the development of EUGENE:

- Colin Shea-Blymyer
- Joseph Mehr
- Caitlin Parker
- JP Gazewood
- Alex Karvelis

Chaotic circuits in phase space

