## Discovering Dynamical Kinds

#### Benjamin Jantzen

Department of Philosophy Virginia Tech

bjantzen@vt.edu

June 29, 2016



# Outline

#### Introduction

- 2) Theoretical background
- 3 The algorithm
- 4) Performance of the algorithm
- 5 Stochastic causation



# Dynamical form

#### What do these systems have in common?



## Dynamical form

#### What do these systems have in common?



$$\ddot{x} + 2\zeta\omega_0\dot{x} + \omega_0^2x = 0,$$
$$\omega_0 = \sqrt{\frac{k}{m}}, \ \zeta = \frac{c}{2\sqrt{mk}}$$

June 29, 2016 3 / 36

gather data from a single system

- gather data from a single system
- (choose a model to parameterize the system)

- gather data from a single system
- (choose a model to parameterize the system)
- fit a function to particular trajectories or fit a transfer function

- gather data from a single system
- (choose a model to parameterize the system)
- fit a function to particular trajectories or fit a transfer function
- only after the fact, consider classifying dynamical form

• could tell if a system exhibits distinct dynamical regimes

- could tell if a system exhibits distinct dynamical regimes
- could validate complex computer models

- could tell if a system exhibits distinct dynamical regimes
- could validate complex computer models
- data from multiple experiments can be pooled prior to model selection

## What it takes to find kinds

Two requirements:

Two requirements:

a rigorous definition of dynamical kind

Two requirements:

- a rigorous definition of dynamical kind
- 2 an empirical test for sameness of dynamical kind

# Outline

#### Introduction

- 2 Theoretical background
- 3 The algorithm
- 4 Performance of the algorithm
- 5 Stochastic causation



# Outline

#### Introduction

- 2 Theoretical background
- 3 The algorithm
- 4) Performance of the algorithm
- 5 Stochastic causation



#### Definition (Dynamical symmetry)

Let V be a set of variables. Let  $\sigma$  be an intervention on the variables in  $Int \subset V$ . The transformation  $\sigma$  is a dynamical symmetry with respect to some index variable  $X \in V - Int$  if and only if  $\sigma$  has the following property: for all  $x_i$  and  $x_f$ , the final state of the system is the same whether  $\sigma$  is applied when  $X = x_i$  and then an intervention on X makes it such that  $X = x_f$ , or the intervention on X is applied first, changing its value from  $x_i$  to  $x_f$ , and then  $\sigma$  is applied.



![](_page_20_Figure_1.jpeg)

$$p_1 := p_1$$
 (1)  
 $p_2 := p_1 + \rho g h$  (2)

![](_page_21_Picture_1.jpeg)

$$p_1 := p_1$$
 (1)  
 $p_2 := p_1 + \rho gh$  (2)

$$p_1 p_2 h$$

![](_page_22_Figure_1.jpeg)

$$p_1 := p_1$$
 (1)  
 $p_2 := p_1 + \rho g h$  (2)

![](_page_22_Figure_3.jpeg)

![](_page_23_Figure_1.jpeg)

$$p_1 := p_1$$
 (1)  
 $p_2 := p_1 + \rho g h$  (2)

$$\begin{array}{ccc} p_1 & p_2 & h \\ \hline P & P & 0 \\ P+c & P+c & 0 \end{array}$$

![](_page_24_Picture_1.jpeg)

$$p_1 := p_1$$
 (1)  
 $p_2 := p_1 + \rho g h$  (2)

| $p_1$ | $p_2$                | h       |
|-------|----------------------|---------|
| Р     | Р                    | 0       |
| P + c | P + c                | 0       |
| P + c | $P + c + \rho g h_f$ | $h_{f}$ |

![](_page_25_Picture_1.jpeg)

$$p_1 := p_1 \tag{1}$$
$$p_2 := p_1 + \rho g h \tag{2}$$

$$\begin{array}{c|ccc} p_1 & p_2 & h \\ \hline P & P & 0 \\ P+c & P+c & 0 \\ P+c & P+c+\rho g h_f & h_f \end{array}$$

 $p_1 p_2 n$ 

![](_page_26_Picture_1.jpeg)

$$p_1 := p_1 \tag{1}$$
$$p_2 := p_1 + \rho g h \tag{2}$$

$$\begin{array}{cccc}
 p_1 & p_2 & h \\
 P & P & 0 \\
 P + c & P + c & 0 \\
 P + c & P + c + \rho g h_f & h_f \\
 \\
 \underline{p_1} & p_2 & h \\
 P & P & 0
 \end{array}$$

![](_page_27_Picture_1.jpeg)

$$p_1 := p_1$$
 (1)  
 $p_2 := p_1 + \rho g h$  (2)

$$\begin{array}{c|ccc} p_1 & p_2 & h \\ \hline P & P & 0 \\ P+c & P+c & 0 \\ P+c & P+c+\rho g h_f & h_f \end{array}$$

$$\begin{array}{ccc} p_1 & p_2 & h \\ \hline P & P & 0 \\ P & P + \rho g h_f & h_f \end{array}$$

![](_page_28_Picture_1.jpeg)

$$p_1 := p_1$$
 (1)  
 $p_2 := p_1 + \rho gh$  (2)

$$\begin{array}{ccc} p_1 & p_2 & h \\ \hline P & P & 0 \\ P & P + \rho g h_f & h_f \\ P + c & P + c + \rho g h_f & h_f \end{array}$$

#### Definition (Dynamical symmetry with respect to time)

Let t be the variable representing time, and let V be a set of additional dynamical variables such that  $t \notin V$ . Let  $\sigma$  be an intervention on the variables in  $Int \subset V$ . The transformation  $\sigma$  is a dynamical symmetry with respect to time if and only if for all intervals  $\Delta t$ , the final state of the system is the same whether  $\sigma$  is applied at some time  $t_0$  and the system evolved until  $t_0 + \Delta t$ , or the system first allowed to evolve from  $t_0$  to  $t_0 + \Delta t$  and then  $\sigma$  is applied.

## Example: Scaling and exponential growth

![](_page_30_Figure_1.jpeg)

 Algorithm described assumes (noisy) data decribing desterministic systems that change through time.

- Algorithm described assumes (noisy) data decribing desterministic systems that change through time.
- Symmetries of differential equations in time familiar from physics.

- Algorithm described assumes (noisy) data decribing desterministic systems that change through time.
- Symmetries of differential equations in time familiar from physics.
- Can be relaxed nothing special about this sort of dynamics.

#### Definition (Symmetry structure:)

The symmetry structure of a collection of dynamical symmetries,  $\Sigma = \{\sigma_i | i = 1, 2, ...\}$  is given by the composition function  $\circ : \Sigma \times \Sigma \to \Sigma$ .

#### Definition (Dynamical kind)

Two systems are of the same *dynamical kind* (same dynamical form) iff they have the same symmetry structure.
# Outline

## Introduction

- 2) Theoretical background
- 3 The algorithm
  - 4 Performance of the algorithm
- 5 Stochastic causation

### 6 Conclusions

collect data for target variable(s) as a function of time, before and after intervention

- collect data for target variable(s) as a function of time, before and after intervention
- *transform* the data to build polynomial models of dynamical symmetries

- collect data for target variable(s) as a function of time, before and after intervention
- *transform* the data to build polynomial models of dynamical symmetries
- 3 *compare* symmetries

# Phase 1: Sampling













B. Jantzen (VT)

June 29, 2016 20 / 36

 separate model – one which assumes the systems are of different dynamical kinds and fits separate polynomials to the symmetries of each

- separate model one which assumes the systems are of different dynamical kinds and fits separate polynomials to the symmetries of each
- *joint model* one which assumes the systems are of the same dynamical kind and pools the data for each initial condition before fitting the symmetries with polynomials

- separate model one which assumes the systems are of different dynamical kinds and fits separate polynomials to the symmetries of each
- *joint model* one which assumes the systems are of the same dynamical kind and pools the data for each initial condition before fitting the symmetries with polynomials
- 2 Compare the error of the two models:

- separate model one which assumes the systems are of different dynamical kinds and fits separate polynomials to the symmetries of each
- *joint model* one which assumes the systems are of the same dynamical kind and pools the data for each initial condition before fitting the symmetries with polynomials
- 2 Compare the error of the two models:
  - If *error<sub>joint</sub>* >> *error<sub>separate</sub>* then conclude they are different types;

- separate model one which assumes the systems are of different dynamical kinds and fits separate polynomials to the symmetries of each
- *joint model* one which assumes the systems are of the same dynamical kind and pools the data for each initial condition before fitting the symmetries with polynomials
- 2 Compare the error of the two models:
  - If *error<sub>joint</sub>* >> *error<sub>separate</sub>* then conclude they are different types;
  - Else, conclude they are the same dynamical kind.

# Outline

## Introduction

- 2) Theoretical background
- 3 The algorithm
- 4 Performance of the algorithm
- 5 Stochastic causation

### 6 Conclusions

Generalized logistic growth:

$$\dot{x} = rx\left(1 - \frac{x}{K}\right)$$
 vs.  $\dot{x} = rx\left(1 - \left(\frac{x}{K}\right)^{\beta}\right)$ 

Generalized logistic growth:

$$\dot{x} = rx\left(1 - \frac{x}{K}\right)$$
 vs.  $\dot{x} = rx\left(1 - \left(\frac{x}{K}\right)^{\beta}\right)$ 

Generalized logistic growth:

$$\dot{x} = rx \left(1 - \frac{x}{K}\right) \text{ vs. } \dot{x} = rx \left(1 - \left(\frac{x}{K}\right)^{\beta}\right)$$
  
Symmetries ( $\beta = 1$ ):  $\sigma_{p}(x_{\Delta_{t}}) = \frac{Kx}{(1 - e^{-p})x + e^{-p}K}$ 

• Generalized logistic growth:  $\dot{x} = rx \left(1 - \frac{x}{K}\right) \text{ vs. } \dot{x} = rx \left(1 - \left(\frac{x}{K}\right)^{\beta}\right)$ Symmetries  $(\beta = 1)$ :  $\sigma_p(x_{\Delta_t}) = \frac{Kx}{(1 - e^{-p})x + e^{-p}K}$ 

2 Two-species Lotka-Volterra competition:

$$\dot{x}_1 = r_1 x_1 \left( 1 - (x_1 + \alpha_{12} x_2) / K_1 \right)$$
  
$$\dot{x}_2 = r_2 x_2 \left( 1 - (x_2 + \alpha_{21} x_1) / K_2 \right)$$

• Generalized logistic growth:  $\dot{x} = rx \left(1 - \frac{x}{K}\right) \text{ vs. } \dot{x} = rx \left(1 - \left(\frac{x}{K}\right)^{\beta}\right)$ Symmetries  $(\beta = 1)$ :  $\sigma_p(x_{\Delta_t}) = \frac{Kx}{(1 - e^{-p})x + e^{-p}K}$ 

2 Two-species Lotka-Volterra competition:

$$\dot{x}_1 = r_1 x_1 \left( 1 - (x_1 + \alpha_{12} x_2) / K_1 \right)$$
  
$$\dot{x}_2 = r_2 x_2 \left( 1 - (x_2 + \alpha_{21} x_1) / K_2 \right)$$

• Generalized logistic growth:  $\dot{x} = rx \left(1 - \frac{x}{K}\right) \text{ vs. } \dot{x} = rx \left(1 - \left(\frac{x}{K}\right)^{\beta}\right)$ Symmetries  $(\beta = 1)$ :  $\sigma_p(x_{\Delta_t}) = \frac{Kx}{(1 - e^{-p})x + e^{-p}K}$ 

2 Two-species Lotka-Volterra competition:

$$\dot{x}_1 = r_1 x_1 \left( 1 - (x_1 + \alpha_{12} x_2) / K_1 \right)$$
  
$$\dot{x}_2 = r_2 x_2 \left( 1 - (x_2 + \alpha_{21} x_1) / K_2 \right)$$

Symmetries:  $f(r_2/r_1)$ 

# Accuracy: single dependent variable



- (a), (b) generalized logistic growth, different dynamical kinds
  - (c) accuracy discerning different kinds
- (d), (e) generalized logistic growth, same dynamical kind
  - (f) accuracy detecting similarity of kind

## Accuracy: two dependent variables



- (a), (b) Lotka-Volterra competition, different dynamical kinds
  - (c) accuracy discerning different kinds
- (d), (e) Lotka-Volterra competition, same dynamical kind
  - (f) accuracy detecting similarity of kind

## Noise and normality



- (a) Accuracy as a function of standard deviation of normally distributed noise for logistic growth models.
- (b) Accuracy as a function of the  $\alpha$ -parameter of the skew normal distribution for logistic growth systems.
- (c) Accuracy versus standard deviation of normally distributed noise for two-species Lotka-Volterra systems.
- (d) Accuracy versus  $\alpha$  for Lotka-Volterra systems.

# Outline

## Introduction

- 2) Theoretical background
- 3 The algorithm
- 4) Performance of the algorithm
- 5 Stochastic causation

#### 6 Conclusions

#### Definition (Dynamical symmetry)

Let V be a set of variables. Let  $\sigma$  be an intervention on the variables in  $Int \subset V$ . The transformation  $\sigma$  is a dynamical symmetry with respect to some index variable  $X \in V - Int$  if and only if  $\sigma$  has the following property: for all  $x_i$  and  $x_f$ , the final probability distribution over V is the same whether  $\sigma$  is applied when  $E[X] = x_i$  and then an intervention on X makes it such that  $E[X] = x_f$ , or the intervention on X is applied first, changing its expected value from  $x_i$  to  $x_f$ , and then  $\sigma$  is applied.

Suppose

$$x := x + \epsilon$$
  
$$y := f(x; y_0) + \eta$$

where

 $f(x_0; y_0) = y_0$ 

#### Suppose

$$x := x + \epsilon$$
$$y := f(x; y_0) + \eta$$

where

 $f(x_0;y_0)=y_0$ 

$$p(x, y) = p_x(x)p_\eta(y|x) = p_x(x)p_\eta(y - f(x; y_0))$$

#### Suppose

$$x := x + \epsilon$$
  
$$y := f(x; y_0) + \eta$$

where

$$f(x_0;y_0)=y_0$$

$$p(x, y) = p_x(x)p_\eta(y|x) = p_x(x)p_\eta(y - f(x; y_0))$$

To satisfy the symmetry condition for transformation,  $\sigma$ , must have:

$$p(x_0 + \delta x)p_{\eta}(y - f(x_0 + \delta; \sigma(y_0))) = p(x_0 + \delta)p_{\eta}(y - \sigma(f(x_0 + \delta; y_0)))$$

#### Suppose

$$x := x + \epsilon$$
  
$$y := f(x; y_0) + \eta$$

where

$$f(x_0;y_0)=y_0$$

$$p(x, y) = p_x(x)p_\eta(y|x) = p_x(x)p_\eta(y - f(x; y_0))$$

To satisfy the symmetry condition for transformation,  $\sigma$ , must have:

$$p(x_0 + \delta x)p_{\eta}(y - f(x_0 + \delta; \sigma(y_0))) = p(x_0 + \delta)p_{\eta}(y - \sigma(f(x_0 + \delta; y_0)))$$

$$f(x_0 + \delta; \sigma(y_0))) = \sigma(f(x_0 + \delta; y_0))$$

B. Jantzen (VT)

## Recasting the logistic growth example

$$x := x + \epsilon$$
  
$$x_{\Delta t}(x; y_0) := \frac{(K - x_0)y_0 x}{(K - y_0)x_0 + (y_0 - x_0)x}$$

where  $y_0 = x_{\Delta t}(x_0)$ .

## Recasting the logistic growth example

$$x := x + \epsilon$$
  
$$x_{\Delta t}(x; y_0) := \frac{(K - x_0)y_0x}{(K - y_0)x_0 + (y_0 - x_0)x_0}$$

where  $y_0 = x_{\Delta t}(x_0)$ . Symmetry condition:

$$\sigma(x_{\Delta t}(x_0+\delta;y_0)=x_{\Delta t}(x_0+\delta;\sigma(y_0))$$

## Recasting the logistic growth example

$$x := x + \epsilon$$
  
$$x_{\Delta t}(x; y_0) := \frac{(K - x_0)y_0 x}{(K - y_0)x_0 + (y_0 - x_0)x}$$

where  $y_0 = x_{\Delta t}(x_0)$ . Symmetry condition:

$$\sigma(x_{\Delta t}(x_0+\delta;y_0)=x_{\Delta t}(x_0+\delta;\sigma(y_0))$$

$$\sigma_p(x_{\Delta_t}) = \frac{K_X}{(1 - e^{-p})x + e^{-p}K}$$

# Outline

## Introduction

- 2) Theoretical background
- 3 The algorithm
- 4) Performance of the algorithm
- 5 Stochastic causation



# Summary
## • It is possible to directly assess sameness of dynamical kind.

- It is possible to directly assess sameness of dynamical kind.
  - Can be done with no prior knowledge or assumptions about the underlying dynamics.

## • It is possible to directly assess sameness of dynamical kind.

- Can be done with no prior knowledge or assumptions about the underlying dynamics.
- Method relies on comparing information about dynamical symmetries implicit in sets of trajectories.

- It is possible to directly assess sameness of dynamical kind.
  - Can be done with no prior knowledge or assumptions about the underlying dynamics.
  - Method relies on comparing information about dynamical symmetries implicit in sets of trajectories.
- The algorithm presented is accurate and robust under noise and variation of the underlying error distribution.

- It is possible to directly assess sameness of dynamical kind.
  - Can be done with no prior knowledge or assumptions about the underlying dynamics.
  - Method relies on comparing information about dynamical symmetries implicit in sets of trajectories.
- The algorithm presented is accurate and robust under noise and variation of the underlying error distribution.
- The algorithm presented can be extended to stochastic causation.

• The algorithm presented is a key component of fully automated discovery.

- The algorithm presented is a key component of fully automated discovery.
- Most kinds are useless for finding law-like regularities.

- The algorithm presented is a key component of fully automated discovery.
- Most kinds are useless for finding law-like regularities.
- Dynamical kinds are almost guaranteed to be rich in such regularities.

- The algorithm presented is a key component of fully automated discovery.
- Most kinds are useless for finding law-like regularities.
- Dynamical kinds are almost guaranteed to be rich in such regularities.
- Comparing sameness of dynamical kind is critical for automatically choosing a domain for scientific investigation.

- The algorithm presented is a key component of fully automated discovery.
- Most kinds are useless for finding law-like regularities.
- Dynamical kinds are almost guaranteed to be rich in such regularities.
- Comparing sameness of dynamical kind is critical for automatically choosing a domain for scientific investigation.
- The EUGENE project is aimed at automating this and other components of scientific inference that have resisted algorithmic solution.

## NSF support Funding for this research was provided by the NSF under award number 1454190.



The following people have contributed to the development of EUGENE:

- Colin Shea-Blymyer
- Joseph Mehr
- Caitlin Parker
- JP Gazewood
- Alex Karvelis

## Chaotic circuits in phase space



B. Jantzen (VT)

June 29, 2016 36 / 36