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Abstract are typically sparse: only a few genes are responsible for a

Among the goals of statistical genetics is to find
sparse associations of genetic data with binary
phenotypes, such as heritable diseases. Often,
the data are obfuscated by confounders such as
age, ethnicity, or population structure. A widely
appreciated modeling paradigm which corrects
for such confounding relies on linear mixed mod-
els. These are linear regression models with cor-
related noise, where the noise covariance cap-
tures similarities between the samples. We gen-
eralize this modeling paradigm to binary clas-
sification. We thereby face the technical chal-
lenge that that marginalizing over the noise leads
to an intractable, high-dimensional integral. We
propose a variational EM algorithm to overcome
this problem, where the global model parameters
are {;-norm regularized, leading to a sparse so-
lution. The genetic features that the algorithm
selects are much less correlated with the first
principal component of the noise covariance and
therefore show much less confounding. The pro-
posed method also outperforms Gaussian process
classification and uncorrelated probit regression
in terms of prediction performance. In addition,
we discuss ongoing work on employing stochas-
tic gradient MCMC for this problem class.

1 Introduction

Genetic association studies have emerged as an important
branch of statistical genetics [1}2]. The goal of this field is
to find causal associations between high-dimensional vec-
tors of genotypes, such as single nucleotide polymorphisms
(SNPs), and observable outcomes or phenotypes. These
phenotypes may be continuous or binary, an example be-
ing the outcome of a certain disease. Genetic associations
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phenotype of interest. Finding a small number of relevant
positions in the genome among ten thousands of irrelevant
genes is challenging. For various complex diseases, such as
bipolar disorder or type 2 diabetes [3]], these sparse signals
are yet largely undetected [1], which is why these missing
associations have been entitled the The Dark Matter of Ge-
nomic Associations [4].

Genetic associations can be spurious, unreliable, and unre-
producible when the data are subject to confounding [5! 16}
7]. Confounding can stem from varying experimental con-
ditions and demographics such as age, ethnicity, or gen-
der [8]. The perhaps most important type of confound-
ing in statistical genetics arises due to population struc-
ture [9], as well as similarities between closely related sam-
ples [8} [10} [L1]. Ignoring such confounders can often lead
to spurious false positive findings that cannot be replicated
on independent data [[12]. Correcting for such confounding
dependencies is considered one of the greatest challenges
in statistical genetics [[13]].

A popular approach of correcting for confounding in statis-
tical genetics is based on linear mixed models [[10]. These
are essentially linear regression models with multivariate
noise, where the noise models relatedness between the
samples as a source of confounding. These models simul-
taneously account for a sparse contribution from the lin-
ear weight vector, and a dense contribution from the noise
which is marginalized out. This algorithm finds a sparse
weight vector while automatically accounting for popula-
tion stratification [5]].

Although successful, linear mixed models have been re-
stricted to the linear regression case. We generalize this
modeling paradigm to the case of binary classification. Pro-
bit regression forms the basis of our approach [14], where
we add an £;-norm (Lasso) regularizer that guarantees that
the resulting weight vectors are sparse [15]. However, in
contrast to simple probit regression, the model contains a
correlated multivariate noise variable that correlates the bi-
nary labels. We show that two popular methods result as
limiting cases: £;-norm probit regression (for uncorrelated
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noise), and Gaussian process (GP) probit classification [16]
(when the linear weight vector is zero). Yet, this approach
faces a technical challenge: simultaneous inference of the
linear weight and the correlated noise becomes intractable
in high dimensions. To solve this problem, we propose the
correlated probit regression algorithm (CPR). This algo-
rithm lets us separate a sparse effect from correlated noise.
For the limit of very large data, we introduce a second al-
gorithm SG-SPR which is amenable to data subsampling.

In an experimental study on genetic data, we show the su-
periority of our approach over other methods. Compared
to uncorrelated probit regression, our sparse features are up
to 40% less correlated with the first principal component of
the noise covariance that represents the confounder. Fur-
thermore, compared to the linear mixed model Lasso [17],
probit regression, and GP classification [16], our approach
yields up to 5 percentage points higher prediction accura-
cies. In a computer malware experiment we show that our
approach generalizes beyond statistical genetics.

Our paper is organized as follows. Section [2] introduces
the modeling framework. We first discuss the confound-
ing problem in genetics and introduce two versions of
our model: a simplified version based on a maximum-
likelihood estimate of the noise variable, and the fully cor-
related model. Section [3] then contains the mathematical
details of the inference procedure. In section 4] we then ap-
ply our method to extract features associated with diseases
and traits from confounded genetic data. We also test our
method on a data set that contains a mix of different types
of malicious computer software data.

2 Correlated Probit Regression

We first review the problem of confounding by population
structure in statistical genetics in section[2.1] In section[2.2]
we review linear mixed models and introduce a correspond-
ing model for classification. In section [2.3] we connect our
approach with other models.

2.1 Confounding and Similarity Kernels

The problem of confounding is fundamental in statistics.
A confounder is a common cause both of the genotypes
and the traits. When it is unobserved, it induces spurious
correlations that have no causal interpretation: we say that
the genotypes and traits are confounded [5. 16, [7].

In statistical genetics, a major source of confounding is due
to population structure [9]. Population structure implies
that due to common ancestry, genes of individuals that are
related co-inherit a large number of genes, making them
more similar to each other, whereas the genes of people
of unrelated ancestry are obtained independently, making
them more dissimilar. Population structure is the root of
many unwanted biases. For example, when data is col-

lected only in selected geographical areas (such as in spe-
cific hospitals), one thereby introduces a selection bias into
the sample, meaning that the collected genes do not rep-
resent the overall population. This can heavily distort the
prediction quality of a classifier [13].

Another problem is that people who live geographically
close often share other factors, such as similar environmen-
tal factors or culture. This, in turn, can lead to similar phe-
notypes (such as overweight, drinking habits, or diabetes).
Thus, because genes correlate with location and location
may correlate with specific phenotypes, there is a resulting
correlation between genes and these phenotypes that does
not have a causal interpretation—another manifestation of
confounding by population structure. It is an active area
of research to find models that are less prone to confound-
ing [13]]. In this paper, we present such a model for the
setup of binary classification.

A popular approach to correcting for confounding relies on
similarity kernels, or kinship matrices [9]. Given n sam-
ples, we can construct an n X n matrix K that quantifies the
similarity between samples based on some arbitrary mea-
sure. In the case of confounding by population structure,
one typically chooses K;; = X" X;, where X; is a vector of
genetic features of individual i. As Kj;; contains the scalar
products between the genetic vectors of individuals i and
J» it is a sensible measure of genetic similarity. As another
example, when correcting for confounding by age, then we
can choose K to be a matrix that contains 1 if two indi-
viduals have the same age, and zero otherwise. Details of
constructing similarity kernels can be found in [9]. Next,
we explain how the similarity matrix can be used to correct
for confounding.

2.2 The Correlated Probit Regression (CPR) Model

Our model builds on the LMM-Lasso [17], an important
method of statistical genetics to limit the impact of con-
founding. While the LMM-Lasso relies on linear regres-
sion, we generalize this approach to the much more in-
volved classification setup, where the target values are bi-
nary. The correlated probit model is

yi:sign(XiTw+6,-), e=(e1,...,6) ~N@O,. (1)

In the special case of ¥ = 1, this is just the ordinary (un-
correlated) probit model. In the following, we refer to this
model as Correlated Probit Regression (CPR). For now, we
assume that the covariance matrix X is fixed and known.
In our empirical studies we use the parametrization (T3]
where the parameters are estimated from the data.

We now derive an objective function to find an estimate
of the model parameter w. To simplify the notation, we
will without loss of generality assume that all observed bi-
nary labels y; are 1. The reason why this assumption is no
constraint is that we can always perform a linear transfor-



mation to absorb the sign of the labels into the data matrix
and noise covarianceﬂ Thus, when working with this trans-
formed data matrix and noise covariance, our assumption is
satisfied.

The likelihood function, thus, is the probability that all
transformed labels are 1. This is satisfied when X'w + ¢ >
0. When integrating over all realizations of noise, the re-
sulting (marginal) likelihood is

PMVi:y;=1w) = PMi: X w+e>0w)

N X w,2)d". )
R}

The marginal likelihood is hence an integral of the multi-
variate Gaussian over the positive orthant. In section[3] we
will present efficient approximations of this integral. Be-
fore we get there, we further characterize the model.

Next, we turn the correlated probit model into a model for
feature selection. We are interested in a point estimate of
the weight vector w that is sparse, i.e. contains zeros almost
everywhere. This is well motivated in statistical genetics,
because generally only a small number of genes are be-
lieved to be causally associated with a phenotype such as a
disease. Sparsity is achieved using the Lasso [15], where
we add an ¢;-norm regularizer to the negative marginal
likelihood:

L(w) = —logf N(&; X w,Z)d"e + Aolwlll. 3)
an

+

The fact that the noise variable € and the weight vector w
have different priors or regularizations makes the model
identifiable and lets us cleanly distinguish between linear
effects and effects of correlated noise. It is easy to show
that the objective function (3] is convex.

2.3 Connection to Other Models

Before we come to inference, we point out how our ap-
proach connects to other methods. When removing the
probit likelihood, the model becomes the linear mixed
model Lasso (LMM-Lasso) by [17], hence P(Y|w) =
N(Y; X"w,X). This model has shown to improve selection
of true non-zero effects as well as prediction quality [17].
Our model is a natural extension of the model by [[17] to
binary outcomes, such as the disease status of a patient. As
we explain in this paper, inference of our model is, how-
ever, much more challenging than in [17].

Furthermore, by construction, our model captures two lim-
iting cases: uncorrelated probit regression and Gaussian
process (GP) classification. To obtain uncorrelated probit

'To this end, we apply the transformations X « diag(y)X and
Y « diag(y)Zdiag(y).

regression, we simply set the parameters A; = 0 for i > 2,
thereby eliminating the non-diagonal covariance structure.
To obtain GP classification, we simply omit the fixed ef-
fect (i.e., we set w = 0) so that our model likelihood be-
comes P(Y = Y°%|w) = ﬁv N(¢€;0,%) d"e, where hence the
noise variable € plays the role of the latent function fin
GPs [[16]. When properly trained, our model will therefore
outperform both approaches in terms of accuracy. We will
compare our method to all three limiting cases in the ex-
perimental part of the paper and show enhanced accuracy.

3 Inference Algorithms

We derive three different algorithms to do inference in the
correlated probit model. We want to optimize the objective
function of CPR (3)). This goal comes along with two major
problems:

1. The ¢;-norm regularizer for feature selection is not
differentiable everywhere.

2. The likelihood contains an
dimensional integral.

intractable, high-

Our first method, CPR, directly optimizes (3) by employ-
ing expectation propagation (EP) [18] and the alternat-
ing direction method of multipliers (ADMM) [19]. We
note that other means of approximate inference, such as
Markov Chain Monte-Carlo for truncated Gaussian distri-
butions [20] are also viable options. CPR allows us to
directly optimize the objective (3) and shows very good
prediction performance (see section ). Because this al-
gorithm relies on approximating moments of a truncated
Gaussian integral in n dimensions, it does not easily scale
beyond several thousands of data points. We also propose
two approximate inference methods which are amenable
to data subsampling and therefore scale to very large data.
The first scalable method, CPR-MAP, relies on a MAP-
approximation of the confounder instead of marginalizing
it out. Although CPR-MAP is very fast, its prediction per-
formance is substantially worse than CPR, as we show
experimentally. Our third proposed method, Stochastic
Gradient Correlated Probit Regression (SG-CPR), has the
same benefits of scalability. It makes use of recent break-
throughs in scalable MCMC methods [21} [22] 23] which
are stochastic gradient descent [24] and, therefore, only use
parts of the data in each training step. On the downside, this
method suffers from large feature space dimensionality d
where mixing may become slow.

3.1 Algorithm 1: CPR

CPR relies on a EM-type algorithm [25]. In the outer
loop (the M-step), we follow gradients to optimize the
objective. Since this objective function has an £;-norm
regularizer, we have to split this outer optimization routine
into two parts, one that optimizes the likelihood and



one that optimizes the regularizer. This is described
in[3.1.1} The inner loop (the E-step) consists of computing
the gradient and the Hessian of the likelihood term by
means of approximate inference, which is described in

Sections [3.1.2]and

3.1.1 M-step

The ¢,-norm in the objective function (@) prevents us from
directly applying gradient based methods such as Newton’s
method. A solution is given by ADMM that involves a
generalized objective:

L(w,z,n) :=—log f N(& X w,Z)d"e + Aollzll;
RY
T 1 2
+n (w-2)+ QCIIW —2ll5.

We minimize over w and z and maximize over 5. In al-
ternating between the minimization updates for w, z and
a gradient step in 17, we solve the original problem [19].
While the updates for z and 1 have analytic solutions, we
compute the updates for w by numerical optimization. The
part of the ADMM objective L(w, z,77) depending on w,
called L(w) for brevity, is effectively £,-norm regularized,
enabling us to compute the gradient and the Hessian. This
allows us to apply Newton’s Method to obtain the ADMM
update in w.

3.1.2 E-step

The inner loop of the EM-algorithm amounts to computing
the gradient and Hessian of £(w, z, ). These are not avail-
able in closed-form, but in terms of the first and second
moment of a truncated Gaussian density.

Since computing the derivates of the linear and quadratic
term is straightforward, we focus on Ly(w) :=
—log fR’V N(e; X™w, X)d"e, which contains the intractable
integral.+ In the following, we use the short hand notation

u = puw) = X'w. 4)

It is convenient to introduce the following probability dis-
tribution:

1[e e RIIN(e; 1, %)
f]R” N(e;u,2)d"e '

plelu, X) )

Above, 1[-] is the indicator function. This is just the multi-
variate Gaussian, truncated and normalized to the positive
orthant; we call it the posterior distribution. We further-
more introduce

Hp(W) = Epeuonz) [€, (6)
T, = Bpieuons | (€ = pn)e = ()]

This is just the mean and the covariance of the truncated
multivariate Gaussian, as opposed to u,X which are the
mean and covariance of the non-truncated Gaussian.

In the following we abbreviate 1, = up,(w) and X, = X,(w),
and write Ay = u, — u for the difference between the
means of the posterior (the truncated Gaussian) and the un-
truncated Gaussian. The gradient and Hessian of L(w) are
given by

Yy Lo(w) = A XT, (7
Ho(w) = -X[Z7'(Z, - AuAp"HZ™' - =71 XT.

Note that the variable w enters through X,(w) and Au(w).
Next, we describe how we approximate the intractable ex-
pectations involved in Eq.

3.1.3 Optimizing the Objective Function

In Eq. [/| we have expressed the gradient and Hessian of
Lo(w) in terms of the first and second moment of the pos-
terior (3). The problem is that computing the moments in-
volves intractable expectations over this distribution. We
employ expectation propagation (EP) [26] to approximate
these expectations. Note that also other approximate infer-
ence schemes are possible, such as variational inference or
sampling methods [16].

EP approximates moments of the posterior p(elu,X) in
terms of a variational distribution g(€), approximately min-
imizing the Kullback-Leibler divergence,

q*(dﬂq*’ Eq*)
= arg mqin (Ep[log p(elu, )] — B, [log g(eluy, Eq)]) .

The variational distribution g*(¢€) is an un-truncated Gaus-
sian q*(€; g, Xq) = N(€ pyr, Zy-), characterized by the
variational parameters p - and X,. We approximate the
mean and covariance of the posterior p in terms of the vari-
ational distribution, u, ~ ug, and £, ~ Z;-. We warm-start
each gradient computation with the optimal parameters of
the earlier iteration.

Algorithm [T summarizes our procedure. We denote the ex-
pectation propagation algorithm for approximating the first
and second moment of the truncated Gaussian by EP(u, ).
Here, p and X are the mean and covariance matrix of the
un-truncated Gaussian. The subroutine returns the first and
second moments of the truncated distributions y, and X,.
When initialized with the outcomes of earlier iterations,
this subroutine converges within a single EP loop.

Our algorithm thus consists of three nested loops; the outer
ADMM loop, containing the Newton optimization loop for
computing the update in w and the inner EP loop, which
computes the moments of the posterior. We choose stop-
ping criterion 1 to be the convergence criterion proposed
by Boyd [19] and choose criterion 2 to be always fulfilled,



Algorithm 1 CPR

X =y o X \\pre-process the data
T = diag(y) £ diag(y)
repeat
\\get w**! by EP and Newton’s Method
initialize w = w*
repeat
(g, 2g) < EP(X™w, )
A =p,—X"w
g=ATZIXT 4 e(w =K+ M7
H=X[Z" -2, - ApA"HEZ X" + 1
w=w-aH g
until criterion 2

\\ADMM updates

k+1 =w

k” S/l/ (wk+1 + 17°) \\soft thresholding
nk = g+ WAL A

until criterion 1

i.e. we perform only one Newton optimization step in the
inner loop. Our experiments showed that doing only one
Newton optimization step, instead of executing until con-
vergence, is stable and leads to great speed improvements.
ADMM is known to converge even when the minimizations
in the ADMM scheme are not carried out exactly (see e.g.
1270).

3.2 Algorithm 2: CPR-MAP

For simplicity, we consider the simplest and most widely
used covariance matrix £ which allows us to derive an al-
ternative formulation of the correlated probit modeﬂ Itis
a combination of diagonal noise and a linear kernel of the
data matrix,

X = /lll+/12XTX. (8)
The linear kernel X X measures similarities between genes
and therefore models the effect of genetic similarity be-
tween samples due to population structure. We use the fol-
lowing Gaussian integral identity:

Lw)=-log | NE&X w, 41+ LX X)de + Aolwll}

n
R}

—log NW';0, ,I) f
Rd

n
R+

1
+ Aoliwlly

logfd pOLWIw) dw' + Aolwll}, )
R

2Note that the approach can be easily generalized to arbi-
trary covariance matrix by considering the Cholesky decompo-
sition ¥ = BB".

N X (w+w), 1Ddedw

where

L XT(w+w)
W) & NOw'; 0, A1) cb(—l )
pOo,ww w ) 1:1[ N7

Above, ®(+) is the cumulative standard normal distribution
function. We have introduced the new Gaussian noise vari-
able w’. Conditioned on w’, the remaining integrals fac-
torize over n. However, since w’ is unobserved (hence
marginalized out), it correlates the samples. We interpret
w’ as a confounder.

The simplest approximation to Eq.[9]is to substitute the in-
tegral over w’ by its maximum a posteriori (MAP) value,
leading to the new objective function:

XT +
Lww) == Zl ( (WﬂqW)) (10)

1
ET = Iw'II5 + Aolwll}.

Under the MAP approximation, the likelihood contribution
to the objective function becomes completely symmetric in
w and w’: only the sum w + w’ enters. The difference be-
tween the two weight vectors w and w’ in this approxima-
tion is only due to the different regularizers: while w’ has
an {>-nrom regularizer and is therefore dense, w is £;-norm
regularized and therefore sparse.

For optimizing the MAP approximated objective function
(T0) jointly in w and w’, we introduce a block coordinate
descent scheme alternating between updates in w and w’.
For updating w” we use gradient descent, while for updating
w we employ ADMM (c.f. section [3.1.).

Note that the procedure could be made faster by using a
second-order optimization method for obtaining the up-
dates in w’.

Under the MAP approximation, every feature gets a small
non-zero weight from w’, and only selected features get a
stronger weight from w. The idea is that w’ models the
population structure, which affects all genes. In contrast,
we are interested in learning the sparse weight vector w,
which has a causal interpretation because it involves only a
small number of features[]

The MAP approximation is computationally more conve-
nient, but it has its limits. In the original correlated probit
model in Eq.[T} we marginalize over the confounder, which
is more expensive. In contrast, under the MAP approxi-
mation we optimize over w’ and the the objective function
factorizes over n, which means that we have broken the cor-
relations between the samples. This comes at the cost of re-
duced prediction performance. Since the MAP estimate of
the confounder does not capture the full information of its

3Note that the interplay of two weight vectors is different from
an elastic net regularizer.



distribution, the MAP probit model tend to generalize not
as well as the (full) correlated probit model. We compare
both approaches experimentally in section 4]

3.3 Algorithm 3: SG-CPR

A recent development in scalable Bayesian inference are
stochastic gradient Monte Carlo methods. These methods
approximately sample from a posterior by using only a sub-
set of data for generating a sample and, therefore, being
scalable to big datasets. This is done by using stochastic
optimization to provide efficient proposals for Metropolis-
Hastings algorithms with high acceptance rates. We pro-
pose two versions of SG-CPR, one builds on Stochastic
Gradient Langevin Dynamics (SGLD) [21] and the other
on Constant Stochastic Gradient Descent (c-SGD) pro-
posed in [22].

These methods assume that the likelihood factorizes, con-
ditioned on the global variables. Up to a constant, the log
posterior is

log p(6ly) < ) 1og p(yilf) + log p(®).

i=1

Let S be a set of S random indices drawn uniformly at ran-
dom from the index set {1, ...,n}. The stochastic gradient
w.r.t. the minibatch S of the log likelihood term is

1
8 =—= ) Vyl i6).
8s(6) = ZS] olog p(il6)

SGLD and ¢-SGD work as follows. SGLD performs de-
creasing stochastic gradient step on the negative log joint
distribution, but adds artificial noise to prevent convergence
to the optimum. Instead, the algorithm converges to a sta-
tionary distribution, which can be shown to be the poste-
rior [21]. Constant SGD, on the other hand, only approxi-
mates the posterior. It converges faster because it operates
with constant step sizes.

The following formula summarizes the two methods:

SGLD : 0,’.,.1 =
c-SGD: 044

€ A
0; + ElgS(er) +1, 1~ NO, &),
0; + €8s(6,), (11)

where ¢ is a suitable decreasing learning rate for SGLD.
For ¢c-SGD, it was shown in [22] that the optimal constant
learning rate that best approximates the posterior is € =
AT This definition involves the minibatch size S,
nTrE[88" ])
feature space dimension d, and the stochastic gradient noise
covariance near the optimum, E [ggT].

We now explain how SGLD and c-SGD can be used for
inference in the correlated probit model. Recall that the aim
is to find the MAP estimate of the model by optimizing the
objective function L(w) (@). In section we introduced

an auxiliary variable w’ and obtained the identity
Liw) = logf pOy,w'w) dw' + /10||w||}. (12)
R4

The following EM-algorithm [25]] can be applied to opti-
mize L(w),

E-step: Compute p(w’|y, w'™!)
M-step: w' = argmax, Epryw-nllog p(y, wlw)] + /IOIIWII}.

which involves the posterior of the confounder p(w’[y, w).
This posterior can be approximated using SGLD or c-SGD.
Since this algorithm is based on stochastic gradient descent
SG-CPR scales to hundreds of thousands data points.

4 Empirical Analysis and Applications

We studied the performance of our proposed methods in
experiments on both artificial and real-world data. We con-
sidered the versions CPR (the full correlated probit model
as specified in Eq.[9) and CPR-MAP (its MAP approxima-
tion as contained in Eq.[I0). An experimental analysis of
SG-CPR is left to future work.

Our data was taken from the domains of statistical genetics
and computer malware prediction. Our achievements can
be summarized as follows:

e We compare against 3 competing methods, includ-
ing uncorrelated probit regression, GP classification
and the LMM Lasso. In all considered cases, CPR
achieves higher classification performance.

o The features that our algorithm finds are up to 40%
less confounded by population structure.

o CPR outperforms its MAP approximation across all
considered datasets. Yet, in many cases CPR-MAP is
a cheap alternative to the full model.

4.1 General Experimental Setup

For the real-world and synthetic experiments, we first need
to make a choice for the class of kernels that we use for
the covariance matrix. We choose a combination of three
contributions,

=241+ /12XTX + A3gide.- (13)

The third term is optional and depends on the context; it is
a kernel that we extract from side information in the form
of an additional feature matrix X’, where we choose X;;. as
an RBF kernel on top of the side information X’. Note that
this way, the data matrix enters the model both through the
linear effect but also through the linear kernel. We evaluate
the methods by using 7 instances of the dataset for training



and splitting the remaining examples equally into valida-
tion and test sets. This process is repeated 50 times, over
which we report on average accuracies or areas under the
ROC curve (AUCs) as well as standard errors [28]].

The hyper parameters of the kernels, together with the reg-
ularization parameter Ay, were determined on the valida-
tion set, using grid search over a sufficiently large param-
eter space (optimal values are attained inside the grid; in
most cases A; € [0.1,1000]). For all datasets, the features
were centered and scaled to unit standard deviation, except
in experiment f.4] where the features are binary.

In sections.3|and 4.4 we show that including a linear ker-
nel into the covariance matrix leads to top features which
are less correlated with the population structure in compar-
ison to the features of uncorrelated probit regression. The
correlation plot’in Fig.[4|show the mean correlation of the
top features with population structure and the correspond-
ing standard errors.

4.2 Simulated Data

We generate synthetic data as follows. We generate a
weight vector w € R> with 1 < k < 50 entries being 1, and
the other 50—k entries being 0. We then create a random co-
variance matrix Zgge € R209%200 which serves as side infor-
mation matrixﬂ We draw 200 points X = {x,... xp0} in-
dependently from a uniform distribution over the unit cube
[—1, 11°° and create the labels according to the probit model
(1), using Zgqe as covariance matrix. We reserve 100 sam-
ples for training and 50 for validation and testing, respec-
tively. As a benchmark we introduce the oracle classifier,
where we use the correlated probit model (with covariance
matrix Zgq4.) but skip the training and instead use the true
underlying w for prediction.

For several 1 < k < 50, we generate a dataset according
to the above described procedure. In Fig. [I| we report on
the so-achieved accuracies with respect to the percentage

4The correlation plots in Fig. E]are created according to [8] as
follows. First, we randomly choose 70% of the available data as
training set and obtain a weight vector w by training. We compute
the empirical Pearson correlation coefficient

of each feature with the first principle component of the linear

kernel on top of the data. This is a way to measure the correlation
with the population structure [29]. We define the index set I by
taking the absolute value of each entry of w and sorting them in
descending order. We now sort the so-obtained list of correlation
coeflicients with respect to the index set / and obtain a resorted list
of correlation coefficients (cy,...,c,). In the last step, we obtain
a new list (¢4, ..., ¢,) by smoothing the values, computing ¢; :=
% Zf( cy. Finally, we plot the values (¢4,...,¢,) with respect to
I. This procedure was repeated 30 times for different random
choices of training sets.

>The covariance matrix was created as follows. The ran-
dom generator in MATLAB version 8.3.0.532 was initialized
to seed = 20 using the rng(20) command. The matrix
Ygde Was realized in two steps via A=2*rand(50,200)-1 and
Yside=3%A"*A+0.6*eye(200)+3*ones (200, 200).

of non-zero features (%%). We observe that in the sparse
scenarios (< 20% non-zero features), GP classification and
LMM-Lasso are clearly outperformed by CPR, achieving
an accuracy up to 10 percentage points and 23 percentage
points higher, respectively. Due to being £;-norm regu-
larized and therefore, having the capability of exploiting
sparsity, uncorrelated probit regression performs best in
this regime among the competitors, but still substantially
worse than CPR. LMM-Lasso is also £;-norm regularized
but is not designed for a classification setting. Therefore,
it cannot beat uncorrelated probit regression. In the dense
scenarios, CPR outperforms LMM-Lasso (by 1 to 4 per-
centage points) and performs similarly well to GP classi-
fication, which also takes the correlation structure into ac-
count. In this scenario, uncorrelated probit regression is
clearly worse than the other methods, because it does not
take the correlation structure into account. We observe that
in all scenarios the prediction performance of CPR-MAP is
between uncorrelated probit regression and CPR.

In Fig. 2] we inspect the computed feature weights (green
dots) of £;-norm regularized and ¢,-norm regularized CPR,
respectively. The blue solid line represents the ground truth
(the true underlying weight vector w with k = 10 entries
non-zero). We observe that the £;-norm regularized probit
model finds the true weights without suffering from large
noise as the £,-norm regularized counterpart does.

100 Toy Experiment
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95 . - CPR
- —4— CPR-MAP
—#— Uncorrelated Probit
-4- GP
a5 4 LMM-Lasso

90 T

80
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8% 20% 80% 100%

40% 60%
percentage of non-zero features

Figure 1: Toy: Average accuracies as a function of the number of
true non-zero features in the generating model. (Proposed meth-
ods: CPR and CPR-MAP)
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Figure 2: Toy: Ground truth (blue solid line) and feature weights
(green dots) of ¢;-norm (LeFt) and ¢,-norm (RiGHT) regularized
correlated probit regression.



4.3 Tuberculosis Disease Outcome Prediction From
Gene Expression Levels

We obtained the dataset by [30] from the National Center
for Biotechnology Information website ﬂ which includes
40 blood samples from patients with active tuberculosis
as well as 103 healthy controls, together with the tran-
scriptional signature of blood samples measured in a mi-
croarray experiment with 48,803 gene expression levels,
which serve as features for our purposes. Also available
is the age of the subjects when the blood sample was taken,
from which we compute ZSidcﬂ All competing methods are
trained by using various training set sizes n € [40, 80]. To
be consistent with previous studies (e. g. [8]), we report on
the area under the ROC curve (AUC), rather than accuracy.
The results are shown in Fig. [3] left.

We observe that CPR achieves a consistent improvement
over its uncorrelated counterpart (by up to 12 percentage
points), GP classification (by up to 3 percentage points),
LMM-Lasso (by up to 7 percentage points) and CPR-MAP
(by up to 7 percentage points). In Fig. ] left, we show the
correlation of the top features with population structure (as
confounding factor) for correlated and uncorrelated probit
regression. The plot was created as explained in section
[.1] We find that the features obtained by CPR show much
less correlation with population structure than the features
of uncorrelated probit regression. By inspecting the corre-
lation coeflicients of the first top 10 features of both meth-
ods, we observe that the features found by CPR are 40 %
less correlated with the confounder. This is because pop-
ulation structure was built into our model as a source of
correlated noise.

90 AUCs in the Tuberculosis Dataset
—4— CPR
—+— CPR-MAP
—f— Uncorrelated Probit
g GP
LMN-LASSO—F .=

10 ROC Curves for the Malware Dataset
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Figure 3: Lert, TBC: Average AUC in the tuberculosis experi-
ment with respect to the training set size. RIGHT, MALWARE: Aver-
age ROC curves for the computer malware detection experiment.

Shttp://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE19491

"We compute X4 as RBF kernel on top of the side informa-
tion age using bandwidth o~ = 0.2.
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Figure 4: Correlation of the of top features in the tuberculosis
experiment (LErr) and in the computer malware detection ex-
periment (RigHT). The x-axis is sorted by descending absolute
weights.

4.4 Malicious Computer Software (Malware)
Detection

We experiment on the Drebin dataseﬁ [31]], which con-
tains 5,560 Android software applications from 179 differ-
ent malware families. There are 545,333 binary features;
each feature denotes the presence or absence of a certain
source code string (such as a permission, an API call or a
network address). It makes sense to look for sparse fea-
ture vector [31], as only a small number of strings are truly
characteristic of a malware. The idea is that we consider
populations of different families of malware when train-
ing, and hence correct for the analogue of genetic popu-
lation structure in this new context, that we call “malware
structure”. We concentrate on the top 10 most frequently

CPR__ [[ CPR-MAP | Uncorr. Probit | GP LMM-Lasso |
[749202 || 731204 | 672£03 | 698203 | 6645203 |

Table 1: AUC, attained on the malware dataset.

occurring malware families in the datasetﬂ We took 10
instances from each family, forming together a malicious
set of 100 and a benign set of another 100 instances (i.e.,
in total 200 samples). We employ n = 80 instances for
training and stratify in the sense that we make sure that
each training/validation/test set contains 50% benign sam-
ples and an equal amount of malware instances from each
family. Since no side information is available, we only use
a linear kernel and the identity matrix as components for
the correlation matrix. We report on the (normalized) area
under the Receiver Operating Characteristic (ROC) curve
over the interval [0, 0.1] and denote this performance mea-
sure by AUCy ;. In Fig.[3] right, we show the ROC curves
and in Table [T]the achieved AUCy ;.

We observe that correlated probit regression (CPR)
achieves a consistent improvement in terms of AUC; over
its uncorrelated counterpart (by approximately 7.5 percent-
age points), GP classification (by approximately 5 percent-
age points), LMM-Lasso (by approximately 8.4 percentage

$http://user.informatik.uni-goettingen.de/
~darp/drebin/download.html

?Geinimi, FakeDoc, Kmin, Iconosys, BaseBridge, GinMas-
ter, Opfake, Plankton, Fakelnstaller, DroidKungFu.


http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19491
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19491
http://user.informatik.uni-goettingen.de/~darp/drebin/download.html
http://user.informatik.uni-goettingen.de/~darp/drebin/download.html

points) and over CPR-MAP (by approximately 2 percent-
age points). Furthermore, in Fig. {4} right, we plot the cor-
relation of the top features of correlated and uncorrelated
probit regression with population structure. We observe
that CPR leads to features, which are much less correlated
with the malware structure.

4.5 Flowering Time Prediction From Single
Nucleotide Polymorphisms

We experiment on genotype and phenotype data consisting
of 199 genetically different samples from the model plant
Arabidopsis thaliana [32]. The genotype of each sample
comprises 216,130 single nucleotide polymorphism (SNP)
features. The phenotype that we aim to predict is early or
late flowering of a plant when grown at ten degrees centi-
grade. The original dataset contains the flowering time for
each of the 199 genotypes. We split the dataset into the
lower and upper 45%-quantiles of the flowering time and
binarized the labels, resulting in a set of 180 instances from
which we use n = 150 instances for training. The results

CPR “ CPR-MAP [ Uncorr. Probit [ GP
[ 84.1+0.2 “ 83.6 0.3 [ 83.5+0.2 [ 83.6+0.2 [

LMM-Lasso ]
79.7+0.2 ]

Table 2: FLowERING time prediction experiment (AUCs).

are reported in Table [2]and show that CPR has a slight ad-
vantage of at least 0.5 percentage points in AUC over the
competitors.

An analysis restricted to the ten SNPs with largest abso-
lute regression weights in our model showed that they lie
within four well-annotated genes that all convincingly can
be related to flowering, structure and growth: the gene
AT2G21930 is a growth protein that is expressed during
flowering, AT4G27360 is involved in microtubule motor
activity, AT3G48320 is a membrane protein, involved in
plant structure, and AT5G28040 is a DNA binding protein
that is expressed during flowering.

5 Related Work

We have already commented on how our model relates to
uncorrelated probit regression, GP classification, and lin-
ear mixed models. A common generalized linear model
for classification is the logistic regression model [33]]. Ac-
counting for correlations in the data is non-straightforward
[34]; one has to resort to approximate inference techniques,
including the Laplace and mean field approximations that
have been proposed in the context of GP classification [16],
or the pseudo likelihood method, which has been proposed
in the context of generalized linear mixed models [35].
To our knowledge feature selection has not been studied
in a correlated logistic setup. On the other hand, with-
out correlations, there is numerous work on feature se-

lection in Lasso regression [15]. Alternative sparse pri-
ors to the Lasso have been suggested in [36] for unsu-
pervised learning (again, without compensating for con-
founders). The joint problem of sparse estimation in a cor-
related noise setup has been restricted to the linear regres-
sion case [37, 2, [17], whereas we are interested in classi-
fication. For classification, we remark that the ccSVM [§]]
deals with confounding in a different way and it does not
yield a sparse solution. Finally, our algorithm builds on EP
for GP classification [[16} 26], but note that GP classifica-
tion does not yield sparse estimates and, therefore, gives no
insights in the underlying structure of the problem.

6 Conclusion

We presented a novel algorithm for sparse feature selection
in binary classification where the training data show spuri-
ous correlations due to confounding. Our model is inspired
by the linear mixed model of linear regression, where con-
founding is modeled in terms of a correlated Gaussian noise
variable. While generalizing the LMM modeling paradigm
to binary classification poses technical challenges as exact
inference becomes intractable, our solution relies on ap-
proximate inference. We demonstrated the use of our ap-
proach on two data sets from the field of statistical genet-
ics; a field plagued by confounding of various sorts. We
showed that our algorithm finds features which a less cor-
related with the confounder and, therefore, lets us finds a
sparse signal in the data which has a causal interpretation.

Our CPR algorithm can be seen as a hybrid between an ¢, -
norm regularized probit classifier (enforcing sparsity) and a
GP classifier that takes as input an arbitrary noise kernel. It
distinguishes between sparse linear effects from non-sparse
effects due to confounding as modeled in terms of corre-
lated Gaussian noise. We showed that our model selects
features that are less correlated with the confounders (de-
fined as the first principal components of the noise covari-
ance) and therefore allows to find sparse effects in the data
which has a causal interpretation.

In the future, we aim to improve inference algorithm,
namely the scalable version of correlated probit regression,
SG-SPR, and provide theoretically and empirically analy-
sis. On the other hand we plan to extend the correlated
probit model. First, we want to generalize the model to
a multi-class version. Second, one can use the toolbox of
Gaussian process classification to automatically adjust the
noise covariance from the data.
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