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Abstract
We develop a causal inference approach to
recommender systems. Observational recom-
mendation data contains two sources of in-
formation: which items each user decided to
look at and which of those items each user
liked. We assume these two types of informa-
tion come from differentmodels—the exposure
data comes from a model by which users dis-
cover items to consider; the click data comes
from a model by which users decide which
items they like. Traditionally, recommender
systems use the click data alone (or ratings
data) to infer the user preferences. But this
inference is biased by the exposure data, i.e.,
that users do not consider each item indepen-
dently at random. We use causal inference to
correct for this bias. On real-world data, we
demonstrate that causal inference for recom-
mender systems leads to improved generaliza-
tion to new data.

1 Introduction

The goal of recommender systems is to infer users’ pref-
erences for items and then to predict items that users will
like. We develop a causal inference approach to this prob-
lem.

Here is the idea. Observational recommendation data
contains two sources of information: which items each
user decided to look at and which of those items each
user liked. For example, one of the data sets we ana-
lyze contains which movies each user watched and which
of them each liked; another contains which scientific ab-
stracts each user saw and which PDFs each decided to
download.

We assume these two types of information come from dif-
ferent models—the exposure data comes from a model

by which users discover items to consider; the click data
comes from a model by which users decide which items
they like. Traditionally, recommender systems use the
click data alone (or ratings data) to infer the user prefer-
ences. But this inference is biased by the exposure data,
i.e., that users do not consider each item independently at
random.

We use causal inference to correct for this bias. First, we
estimate the exposure model from the exposure data, a
model of which items each user is likely to consider. Then
we fit the preferences with weighted click data, where
each click (or skip) is weighted by the inverse probability
of exposure (from the exposure model). This is a propen-
sity weighting approach to causal inference [5], i.e., we
warp the observational click data as though it came from
an “experiment” where users are randomly shown items.
We study several variants of this strategy.

Why might this work? Consider the film enthusiast (from
our data) who mostly watches popular drama but has
also enjoyed a couple of documentaries (“Crumb” and
“The Cruise”). A classical recommender system will in-
fer film preferences that center around drama. Our causal
method detects a preference for drama too, but further
up-weights the preference for documentaries. The rea-
son is that the history of the user indicates that she is un-
likely to have been exposed to many documentaries; the
method values its signal from the two she did like. Conse-
quently, whenwe recommend from among the unwatched
films, our method promotes documentaries (“Fast, Cheap
& Out of Control” and “Paris Is Burning”) that the user
(in held-out data) also liked. Across users, on real-world
data, we demonstrate that causal inference for recom-
mender systems leads to improved generalization to new
data.

Related work. Marlin and Zemel [11] first formalized
statistical models for correcting bias in observational rec-
ommendation data. They posit that a user’s decision to
rate an item depends on the user’s opinion of the item.



They propose a mechanism to correct for this rating-
selection bias, based first on generating a rating and then
conditionally on whether the rating is observed. Others
have proposed different rating models using this same
mechanism [10, 3]. In contrast, our model (similar to
Liang et al. [9]) first generates each user’s exposure to
an item and then her rating. Unlike [9], we work with ex-
plicit click data. Thus we can use causal inference to de-
bias the resulting inference of user preferences.

Solving recommendations using causality has been ex-
plored in the multi-arm bandit literature (e.g., [8, 16,
17, 7]). They focus on unbiased evaluation of a rec-
ommendation policy using biased data (e.g., data col-
lected in web log). This work typically uses importance
sampling, weighting the probability of each observed
click under the logging policy and under the (new) rec-
ommendation policy. We use the same tools for data
re-weighting—propensity score weighting is equivalent
to importance sampling—but we reason about learning
preferences rather than evaluating recommendation poli-
cies. Further we work in a batch learning setting (as op-
posed to online learning).

The recent work of Schnabel et al. [15] is closest to
ours. The authors propose a causal inference approach
to learning unbiased estimators from biased rating data.
One important difference with our work is that their
propensity weights depend on user preferences (either di-
rectly through ratings or indirectly through user and item
covariates)—a process known as self-selection—rather
than exposure, as in our work. Their formalization of the
problem also differs: they appeal to empirical risk mini-
mization while we take a Bayesian perspective.

2 A causal model for
recommendation

In this section we develop our method. We describe ex-
plicit recommendation data, a joint model of exposure
and clicks, how we do prediction, and how we do causal
inference.

Data. Our data are explicit data: we know which
items each user saw and which of those items each
clicked (liked) or skipped (disliked). For example, in Sec-
tion 4.4 we analyze a large collection of click data from
arXiv.org.1 We know which arXiv abstracts a user has
viewed and, among those, which PDFs she has down-
loaded. Our goal is to infer each user’s latent preferences
for items and then to use those preferences in a recom-
mender system.

1http://arxiv.org is a pre-print repository for scientific
papers.

We begin with notation for the data. A user is indexed
by u and an item is indexed by i . There are two types
of observations. The exposure data is aui , whether user
u had the opportunity to click on item i . (We use the
verb “click” for concreteness; this can be any type of in-
teraction, including “download,” “purchase,” “listen,” or
“watch.”) The click data is yui , an indicator of whether
user u clicked on (liked) item i or decided to skip (dis-
liked) the item.

These data capture the users’ clicks. There are some
items which a user was exposed to (aui D 1) but did not
click on (yui D 0); there are other items that a user was
exposed to (aui D 1) and did click on (yui D 1); finally,
there are items that a user was not exposed to (aui D 0)
and, by definition, did not click on (yui D 0). A user
cannot click on an item she is not exposed to.

Joint models of exposure and clicks. We build a joint
model of this data: an exposure model of what the user
sees and a click model of what the user clicks on, condi-
tional on her seeing it. The key idea behind our approach
is this. Given observational data, i.e., data collected by
users exploring information and clicking on items, clas-
sical inference of the click model—of the user’s pref-
erences for clicking on items that she is exposed to—is
incorrect because of the biases induced by the exposure
model. We take a causal inference approach to this prob-
lem: we infer the user’s preferences from an imagined
experiment where each item is exposed with equal prob-
ability.

We first describe the observation joint, from which we
observe our data set.

aui � f .� j�ui /

yui j aui D 0 � ı0.�/

yui j aui D 1 � g.� j�ui /:

Here the exposure and click models are generic. Each is
governed by the exposure parameter �ui and click param-
eter �ui , respectively.

For example, one exposure model we study is a Bernoulli
with an item-specific parameter. We call this the popu-
larity exposure because it allows some items to be more
likely to be exposed (across users) than others,

aui � Bernoulli.�i /: (1)

Alternatively, the exposure model can capture a user’s
preferences for seeking out items. We will also study
Poisson factorization,

aui � Poisson.�>u i /; (2)

http://arxiv.org


which finds non-negative embeddings for users and
items [2].2

For the click model, we use classical probabilistic ma-
trix factorization [14]. Conditional on being exposed,
the click comes from a normal distribution, yui j aui D
1 � N .�>u ˇi ; �

�1
y /. Here �u is a latent K-vector of user

preferences and ˇi is a latentK-vector of item attributes.
In all models, the conditional distribution of a click yui
given that a user is not exposed to the item (aui D 0) is a
point mass at zero.

Forming predictions. Our goal is to use this model to
form future predictions about the users. We are given
observed data D D f.aui ; yui /g of what each user was
exposed to and what each user clicked on. We want to
predict what we should expose them to in the future, i.e.,
what they would like to see.

Wewill study twoways of predicting. One is to form con-
ditional predictions as the probability that a user clicks on
an item given that she is exposed to it,

E Œyui j aui D 1;D � : (3)

Alternatively, we use marginal predictions, where we
marginalize out the exposure variable

E Œyui jD � D P.aui D 1 j�ui ;D/E Œyui j aui D 1;D � :

(4)

Themarginal prediction uses that yui D 0when aui D 0.
It is apt when the exposure model also contains informa-
tion about the user, i.e., information about what the user
is likely to seek out.

Note that these methods require approximating the poste-
rior predictive distribution of yui and aui given the data.
We now turn to this inference problem.

Causal inference for recommendation. One way to
solve the inference problem is with classical Bayesian in-
ference, where we condition on the observed data and
then use posterior prediction to recommend items. But
there is an issue with using classical Bayesian inference
to form recommendations: the data we observe Dobs is
not the data from which we would like to infer the user’s
preferences and item attributes, i.e., the click model. The
reason is that the exposure model—the distribution that
governs what each user sees—biases our inference about
the click model. Items that users are likely to be exposed
exert too much of an influence; items that users are rarely
exposed to have too little influence.

Ideally, we would infer preferences from an experiment, a
model that randomly exposed each user to items and then

2Though Poisson models capture count data, they are effec-
tive for binary data with many items [2].

recorded which items each one click on. We call this the
intervention joint,

aui � Bernoulli.�/
yui j aui D 0 � ı0.�/

yui j aui D 1 � g.� j�ui /:

In this model, we have intervened on the mechanism from
which users are exposed to items. (This is the “mutilated
model” [13].) Data from this model leads to better esti-
mates of the click model (i.e., their preferences) and bet-
ter generalization to the items that they will want to click
on.

This is a causal approach to the problem. The obser-
vation joint is the model of how we collected the data;
the intervention joint is a model of a randomized experi-
ment that would (in theory) help us make the inferences
that we need. The challenge is to use data from the ob-
servation joint to perform inference in the intervention
joint.

How do we solve this problem? Assume for now that the
exposure model is known and is the popularity model,
i.e., aui � Bernoulli.�i /. We will use inverse propen-
sity weighting [5], which takes samples from the obser-
vation joint and weights them to look like samples from
the intervention joint; this is essentially an importance
sampling technique. Specifically, we weight each obser-
vation .aui ; yui / by 1=�i to estimate �u. (Because of
the click model, this estimate only relies on those data
where aui D 1.) When inferring a user’s preferences,
this down-weights the influence of popular items and up-
weights the influence of unpopular items.

More formally, our goal is to obtain a data set D D

f.aui ; yui /g from the intervention joint and then estimate
p.�u jD/. We define the “do dataset” to be the observed
data embellished with weights, Ddo D f.aui ; yui ; wui /g,
where wui is the inverse probability of exposure. The
posterior is

p.�u jD
do/ / p.�u/

Y
i

p.yui j aui ; �u; ˇi /
wui (5)

Intuitively, this assumes that we see each data point “wui
times”, and that the clicks are conditionally independent
given the preferences.

How is this different from standard causality? One way
is that, in typical causal settings, we have a single causal
question [5]. Here we have many causal questions (one
per user-item pair). What is crucial is that the causal out-
comes are related, each governed by the same set of pa-
rameters.



3 The algorithm

We first estimate the exposure model from the observed
data. This can be the popularity model or Poisson fac-
torization. Then, we use the fitted exposure model to
weight the data (by the inverse probability) and fit the
click model. Finally we use the posterior distribution
of the exposure model and (causal) posterior distribution
of the click model to form predictions. This procedure
generalizes better than Bayesian inference, especially un-
der intervention, i.e., when we change the distribution of
which items a user is exposed to.

3.1 Fitting the exposure model

Popularity model. For popularity exposure model
aui � Bernoulli.�i / (Eq. 1), we obtain the maximum
likelihood estimate O�i by counting the portion of the users
who have been exposed to item i . The propensity score
pui in this case is fixed across users:

pui D O�i ;8u 2 f1; : : : ; U g: (6)

Poisson factorization model. For Poisson factorization
exposure model aui � Pois.�>u i / (Eq. 2) with conju-
gae gamma prior on the latent embeddings �u and i , we
perform standard variational inference [2] on the expo-
sure data aui . After obtaining the optimal approximating
variational distribution q on �u and i at convergence,
we compute the propensity score,

pui D 1�P.aui D 0 j�ui ;D/ � 1�expf�Eq
�
�>u i

�
g:

(7)

3.2 Fitting the click model

The click model (conditional on exposure) is a ma-
trix factorization yui j aui D 1 � N .�>u ˇi ; �

�1
y /.

We place a diagonal normal prior on both user pref-
erence �u � N .0; ��1

�
IK/ and item attributes ˇi �

N .0; ��1
ˇ

IK/.

To fit the model, we compute the maximum a posteriori
estimates of the parameters �u and ˇi . This leads to ef-
ficient closed-form coordinates updates, which scale to
large datasets. Concretely, the objective for the inverse
propensity weighted matrix factorization model (Eq. 5)
is (without loss of generality, we set �y D 1, as we can
always scale �� and �ˇ by �y to obtain the same solu-
tion):

L D
X

.u;i/2O

1

pui
.yui � �

>
u ˇi /

2

C ��
X
u

k�uk
2
2 C �ˇ

X
i

kˇik
2
2;

where the propensity score pui can be obtained by either
Eq. 6 or Eq. 7. The observed set O contains all the entries
with aui D 1. We can obtain the following coordinate
updates by taking the gradients with respect to �u and ˇi
and setting them to 0:

�newu  .
X

i W.u;i/2O

1

pui
ˇiˇ
>
i C�� IK/

�1.
X

i W.u;i/2O

1

pui
yuiˇi /

(8)

ˇnew
i  .

X
uW.u;i/2O

1

pui
�u�
>
u C�ˇ IK/

�1.
X

uW.u;i/2O

1

pui
yui�u/

(9)
The full algorithm for the inverse propensity weighted
matrix factorization is summarized in Algorithm 1. Note
that this algorithm only includes options for fitting the
model causally (Eq. 5). In Section 4, we empirically ex-
plore different combinations of the exposure model, pre-
diction method, and fitting procedure.

Algorithm 1: IPW-MF Coordinate updates for inverse
propensity weighted matrix factorization

Input: Exposed entires in the click matrix
fyui W .u; i/ 2 Og, regularization parameters ��
and �ˇ

Output: User latent factors �1WU and item latent factors
ˇ1WI

Fit the exposure model to compute the propensity score
(Eq. 6 or Eq. 7)
Randomly initialize �1WU , ˇ1WI
while not converged do

for u 1 to U do
Update user factor �u (Eq. 8)

end
for i  1 to I do

Update item factor ˇi (Eq. 9)
end

end
return �1WU , ˇ1WI

4 Empirical study

We studied causal recommender systems on several data
sets. We compared models trained observationally with
models trained causally; we compared predictions made
marginally and those made conditional on exposure; we
studied and evaluated different exposure models, both
those based on popularity and based on personalized pref-
erences; and we studied typical test sets and test sets that
focus on rare items.

We highlight the following results:



ML-1M ML-10M Yahoo-R3 ArXiv

# of users 6,040 69,878 15,400 26,541
# of items 3,706 10,677 1,000 80,082
# of exposures 1.0M 10.0M 0.3M 1.9M
% of exposures 4.47% 1.34% 2.02% 0.09%

Table 1: Attributes of the data. # of exposures is the number of entries with aui D 1 (rated an item, viewed an abstract).
% of exposure refers to the density of the user-item exposure matrix.

� Poisson factorization (Eq. 2) is a better exposure model
than the one based on item popularity (Eq. 1). We eval-
uate the exposure model both as a standalone model to
predict held-out exposure and as a component in the
whole recommender system.

� When the test set focuses on rare items, fitting causally
(Eq. 5) gives better generalization than classical infer-
ence. Causal inference is important for generalizing to
situations that we do not see in training.

� Accounting for exposure is important when making
prediction—recommendation with marginal predic-
tion (Eq. 4) significantly boosts the ranking-based rec-
ommendation performance.

We give details below. We describe the data, methods,
metrics, and results.

4.1 Data

We study three types of data (and four data sets):

� MovieLens (ML-1M and ML-10M). User-movie rat-
ings collected from a movie recommendation service.3
The ratings are on a 1–5 scale.

� Yahoo-R3. Music ratings collected from Yahoo! Mu-
sic services [11]. The ratings are 1–5.

� ArXiv. User-paper clicks from the 2012 log-data of the
arXiv pre-print server. The data are binarized: multi-
ple clicks by the same user on the same paper are con-
sidered to be a single click. This data contains which
papers a user downloaded and which she only read the
abstract.

For ML-1M, ML-10M, and Yahoo-R3, we denote expo-
sure aui D 1 as user u having rated item i . These three
datasets are typically used for rating prediction. Because
our end goal is recommendation, we binarize the ratings
and encode preferences as being either positive or nega-
tive (yui D 1 if rating is greater than or equal to 3 and
yui D 0 otherwise). This type of binarization gives bet-

3http://grouplens.org/datasets/movielens/

ter recommendation performance than directly using pre-
dicted ratings [4].4

In ArXiv we denote exposure aui D 1 as user u having
viewed the abstract of paper i . Among papers that a user
is exposed to, we set yui D 1 if she downloaded the paper
and yui D 0 otherwise.

Table 1 summarizes the important attributes of our four
datasets.

Data pre-processing. For each dataset, we create two
training/validation/test splits: regular (REG) and skewed
(SKEW). We create a regular split by randomly select-
ing the exposed items for each user into training/valida-
tion/test sets, following 70/10/20 proportions. In the reg-
ular split, the test set has the same exposure distribution as
the training and validation sets. This is how researchers
typically evaluate recommendation models (with obser-
vational data).

The skewed split rebalances the splits to better approx-
imate an intervention. We create it by first sampling a
test set with roughly 20% of the total exposures, such
that each item has uniform probability. Training and val-
idation sets are then created from the remaining data (as
in a regular split) with 70/10 proportions. For a skewed
split, the test set will have a completely different expo-
sure distribution from the training and validation sets.
We use this split to demonstrate that causal inference for
recommendation leads to improved generalization perfor-
mance.

Figure 1 shows the scatter plots of the training expo-
sure distribution (reflected by the empirical item popular-
ity) against the test exposure distribution on regular and
skewed splits of the ML-1M dataset. The empirical item
popularity is computed by counting the number of users
who have been exposed to each item. The skewed split
has a roughly uniform exposure distribution across items,
while in the regular split, both training and test sets follow
similar exposure patterns.

4Wenote that the Yahoo! data set also contains a random test
set, where a subset of the users are given 10 randomly selected
songs to rate. But most of the ratings for this random test set are
below 3. Rather, we created a skewed test set.

http://grouplens.org/datasets/movielens/
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Figure 1: Scatter plots of the training exposure distribution (reflected by the empirical item popularity) against the test
exposure distribution on REG (left) and SKEW (right) splits for ML-1M dataset. SKEW split has a roughly uniform
exposure distribution across items, while in REG split both training and test sets follow similar exposure patterns.

4.2 Methods

There are several choices in the proposed method. We
explored combinations of the exposure model, prediction
method, and fitting procedure. The different choices are
summarized below:

� Exposure model. Popularity (Pop, Eq. 1) or Poisson
factorization (PF, Eq. 2).

� Prediction. Conditional prediction (Cond, Eq. 3) or
marginal prediction (Mar, Eq. 4).

� Model fitting. Train the click model causally (CAU,
Eq. 5), with inverse propensity weighting, or observa-
tionally (OBS), with classical inference.

Among these methods are two baselines. The mod-
els that are trained observationally (OBS) with condi-
tional prediction (Cond) correspond to classical matrix
factorization [14]. The models that are trained causally
(CAU) with conditional prediction (Cond) correspond
to inverse propensity weighted matrix factorization pro-
posed in Schnabel et al. [15].5 We note that this approach
significantly outperformed the previous state-of-the-art
model proposed in Hernández-Lobato et al. [3] for the
task of rating prediction (though the main focus of this
paper is on recommendation).

Hyperparameters. We perform grid search using �� 2
f10�4; 10�3; : : : ; 104g and �ˇ 2 f10�4; 10�3; : : : ; 104g
to select hyperparameters based on the normalized dis-
counted cumulative gain (NDCG) [6] of the validation
set.

We set the dimension of the latent spaceK to 30 and use
the same random initialization of �u and ˇi in all settings.
For the scalable coordinate updates in Algorithm 1, we

5Even though Schnabel et al. [15] derive the model from
empirical risk minimization framework, the model objective
closely resembles the joint log-likelihood of the causally trained
model (CAU) with conditional prediction (Cond).

declare convergence when the mean squared error on the
validation set increases.

4.3 Metrics

We separately evaluate the exposure model, how well we
predict which items a user will see, and the click model,
which items a user will like. Note that causal inference of
the click model uses the exposure model to compute the
propensity score. Further, marginal prediction of clicks
also uses the exposure model.

We evaluate the exposure model using model fitness to
the data (predictive log-likelihood). We evaluate the click
model with recommendation metrics, both a likelihood-
based metric (a tail probability) and a ranking-based met-
ric (mean average rank [1]).6 We describe the recommen-
dation metrics in turn.

Predictive log tail probability (PLP). For yui in
the heldout test set, we compute the predictive log-
probability based on its value and whether we predict
conditionally or marginally (see Eq. 4).

Conditional prediction uses EŒyui j aui D 1;D �. If
yui D 1, we compute right-tail conditional predictive
log-probability for positively preferred items,

logP.ypred
ui > 1 j aui D 1;D/:

Otherwise we compute left-tail conditional predictive
log-probability

logP.ypred
ui � 0 j aui D 1;D/:

Both correspond to Gaussian tail probability for matrix
factorization.

6NDCG [6] is another commonly used ranking-based met-
ric. It emphasizes the importance of the top ranks by logarith-
mically discounting ranks. MAR, on the other hand, makes no
such discounting.



Marginal prediction uses EŒyui j D �. Recall pui is the
probability that user u is exposed to item i from the expo-
sure model. If yui D 1, we compute right-tail marginal
predictive log-probability,

logP.ypred
ui > 1 j D/

D logpui C logP.ypred > 1jaui D 1;D/:

Otherwise we compute left-tail marginal predictive log-
probability

logP.ypred
ui � 0 j D/

D log
�
puiP.y

pred
ui � 0 j aui D 1;D/C .1 � pui /

�
:

The intuition behind PLP is that we would like to have 0’s
and 1’s in the heldout set well-separated. This is different
from the commonly used metrics for rating prediction,
e.g., mean squared error or mean absolute error, both of
which penalize the model unless it predicts with a perfect
0 and 1. We report average PLP over all the heldout yui
in the test set.

Mean Average Rank. We compute MAR as follows.
For user u we calculate the ranking of all the items
i 2 f1; 2; : : : ; I g by sorting the predictions and exclud-
ing the items from the training and validation sets. De-
fine rank.u; i/ as the predicted rank of item i for user u:
rank.u; i/ D 0 if item i is ranked first for user u and
rank.u; i/ D I � 1 if ranked last. For items within a set
Iu,

MARu D
1

jIuj

X
i2Iu

rank.u; i/:

In our studies, Iu is the item set in the heldout set with
yui D 1, i.e., the items that user u rated positively or the
papers that user u downloaded after looking at the ab-
stract. Since the value of MAR depends on the size of
the item set I , we report the normalized MAR percentile
instead as MARu=I . This also corresponds to the ex-
pected percentile ranking proposed in Hu et al. [4] with
binary feedback data. The interpretation of MAR is on
average at what percentile a heldout item will be ranked
(smaller is better). The reported MAR averages over all
users.

4.4 Results

We report our studies on all data. We evaluated both the
exposuremodel alone and the clickmodel, which uses the
exposure model to improve its recommendations.

Evaluating the exposure model. We first compare two
different exposure models used in this paper: Poisson fac-
torization (PF) and the popularity model (Pop). We use

the training set created in Section 4.1 to train the model
(for PF, we use the validation set tomonitor convergence).
We randomly sample the same number of entries with
aui D 0 as those with aui D 1 and report the average
heldout predictive log-likelihood in Table 2.

PF always outperforms Pop. Further, the predictive log-
likelihood is always lower on skewed test sets than on reg-
ular test sets. This is expected because skewed test sets
follow a different exposure distribution from the training
and validation sets. This makes it harder for the exposure
model to correctly predict its values.

Evaluating the click model. We summarize the log
probability (PLP) and mean average rank (MAR) (de-
scribed in Section 4.3) in Table 3a and Table 3b, respec-
tively. The table reports eight different model configu-
rations based on which exposure model is used, how the
model is fit, and how predictions are formed.7

From Table 3, we make the following observa-
tions.

1. Poisson factorization (PF) gives better performance in
terms of both PLP andMAR than the popularity expo-
sure model (Pop). (Pop configurations are on the top
half of each table; PF configurations are on the bottom
half.)

2. If the test set exposure comes from the same distri-
bution as the training set (regular split), training the
model observationally or causally does not make a dif-
ference in terms of PLP. As forMAR, we canmake the
same observation with marginal prediction, but ArXiv
is an exception.

On the other hand, if the test set exposure distri-
bution is different (the skewed split), training the
model causally gives more robust generalization per-
formance. Even on ArXiv, we can see that moving
from regular to skewed severely degrades the perfor-
mance of observationally-trained models, as opposed
to causally-trained models, where the degradation is
comparably weaker.

3. Overall, marginal prediction boosts MAR comparing
to the conditional counterparts. (PLP is not compa-
rable between conditional and marginal.) When we
predict whether a user will like an item, we should
consider her preference as well as how likely she is
to seek out the item.

4. In Schnabel et al. [15], the authors use a naive Bayes
propensity score estimator. Our results show that a

7There are seven distinct configurations, as the ones that
are trained observationally (OBS) with conditional prediction
(Cond) will not depend on the exposure model. We keep all
eight configurations in Table 3 for easy comparison.



ML-1M ML-10M Yahoo-R3 ArXiv
REG SKEW REG SKEW REG SKEW REG SKEW

Pop -1.39 -2.07 -1.64 -2.76 -1.81 -2.74 -3.83 -3.95
PF -0.97 -1.51 -1.08 -2.06 -1.58 -2.35 -2.71 -2.80

Table 2: Heldout predictive log-likelihood for Poisson factorization (PF) exposure model and popularity exposure
model (Pop). PF outperforms Pop across datasets. The predictive log-likelihood is generally lower on SKEW than
REG.

ML-1M ML-10M Yahoo-R3 ArXiv
REG SKEW REG SKEW REG SKEW REG SKEW

Pop
Cond OBS -1.50 -2.07 -1.62 -2.59 -1.58 -1.75 -1.61 -1.65

CAU -1.61 -1.95 -1.67 -1.89 -1.51 -1.56 -1.74 -1.76

Mar OBS -3.17 -4.29 -3.56 -5.63 -2.98 -3.53 -3.93 -4.21
CAU -3.21 -4.25 -3.60 -5.24 -2.84 -3.53 -3.94 -4.15

PF
Cond OBS -1.50 -2.07 -1.62 -2.59 -1.58 -1.75 -1.61 -1.65

CAU -1.48 -1.84 -1.51 -1.96 -1.49 -1.55 -1.60 -1.62

Mar OBS -2.62 -3.87 -2.69 -4.61 -2.71 -3.40 -3.05 -3.32
CAU -2.60 -3.57 -2.69 -4.42 -2.59 -3.14 -3.04 -3.33

(a) Predictive log tail probability (bigger is better)

ML-1M [%] ML-10M [%] Yahoo-R3 [%] ArXiv [%]
REG SKEW REG SKEW REG SKEW REG SKEW

Pop
Cond OBS 13.0 25.6 5.4 18.3 15.1 36.1 18.4 23.6

CAU 17.3 27.1 8.0 18.4 21.5 31.7 32.1 35.7

Mar OBS 11.8 26.6 5.1 18.9 15.6 36.9 22.5 33.8
CAU 12.3 26.9 5.3 18.7 15.8 36.6 30.0 42.9

PF
Cond OBS 13.0 25.6 5.4 18.3 15.1 36.1 18.4 23.6

CAU 16.9 26.6 7.8 17.1 16.6 29.2 30.7 33.9

Mar OBS 6.9 19.1 2.9 14.2 10.2 28.9 7.5 13.0
CAU 6.9 18.4 3.1 14.2 9.9 25.9 11.2 13.1

(b) Mean average rank (smaller is better)

Table 3: Predictive log tail probability (PLP) and mean average rank (MAR) for the click model on different datasets.
The results are organized by the exposure model (Pop or PF), how to fit the model (OBS or CAU), and how to make
prediction (Cond orMar). The Cond-OBSmodels correspond to the classical matrix factorization [14]. The Cond-CAU
models correspond to Schnabel et al. [15]. See main text for detailed analysis.



more flexible propensity model (e.g., Poisson factor-
ization) tends to give better recommendation perfor-
mance.

5. We notice that the results with causally-trained mod-
els (CAU) on ArXiv are less stable than those from
the other three datasets. ArXiv is more than one order
of magnitude sparser than the other datasets and less
popularity-biased—even considering abstract views,
most of the papers are only viewed and downloaded
by a small number of users. Therefore, the estimated
propensity score could contain extreme values, a com-
mon problem for methods involving propensity score
[12]. As part of the future work, we will investigate
different propensity score smoothing techniques.

5 Conclusion

In this paper, we develop a causal inference approach to
recommendation with explicit data. We separately model
two sources of information: the exposure data (which
items each user decided to look at) and click data (which
of those items each user liked). Exposure data introduces
bias when we estimate parameters of a recommendation
model from the click data, as rare items do not get as
much exposure as popular ones. We use inverse propen-
sity weighting to correct for this bias. Through extensive
empirical study, we demonstrate that this causal approach
to recommender systems leads to improved generaliza-
tion to new data.

As future work, we can develop similar methodology for
implicit data [4]. The main difficulty in implicit data is
that we do not know which items a user has been ex-
posed to. The exposurematrix factorizationmodel and its
variations developed in Liang et al. [9] which introduce
the user exposure as latent variables could be potentially
helpful with that.
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