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Abstract 

Identification of latent variables that govern a 
problem and the relationships among them, given 
measurements in the observed world, are 
important for causal discovery. This identification 
can be accomplished by analyzing the constraints 
imposed by the latents in the measurements. We 
introduce the concept of pairwise cluster 
comparison (PCC) to identify causal relationships 
from clusters of data points and provide a two-
stage algorithm called learning PCC (LPCC) that 
learns a latent variable model (LVM) using PCC. 
LPCC learns exogenous latents and latent 
colliders before also learning latent non-colliders, 
all together with their observed descendants, by 
using pairwise comparisons between data clusters 
in the measurement space that explain latent 
causes. If the true graph has no serial connections, 
LPCC returns the true graph, and if the true graph 
has at least a single serial connection, LPCC 
returns a pattern of the true graph. LPCC’s most 
important advantage is that it is not limited to 
linear or latent-tree models and makes only mild 
assumptions about the distribution. The code and 
evaluation results are freely available 
(http://www.ee.bgu.ac.il/~boaz/software.html),  
and too technical details and all proofs are in a 
supplementary material file. 

1. INTRODUCTION & RELATED WORK 

Latent variable models (LVMs) represent latent variables 
and the causal relationships among them to explain 
observed variables that have been measured in the domain. 
LVMs reduce dimensionality by aggregating (many) 
observed variables into a few latent variables, each of 
which represents a “concept” explaining some aspects of 
the domain that can be interpreted from the data. 

Learning an LVM exploits values of the measured 
variables as manifested in the data to make an inference 
about the causal relationships among the latent variables 
and to predict the value of these variables. Although 
statistical methods for learning an LVM, such as factor 
analysis, effectively reduce dimensionality and may fit the 
data reasonably well, the resulting models might not have 
any correspondence to real causal mechanisms (Silva et al., 
2006). On the other hand, the focus of learning Bayesian 
networks (BNs) is on causal relations among observed 
variables, whereas the detection of latent variables and the 
interrelations among themselves and with the observed 
variables has received little attention. Learning an LVM 
using Inductive Causation* (IC*) (Pearl and Verma, 1991) 
and Fast Causal Inference (FCI) (Spirtes et al., 2000) 
returns partial ancestral graphs, which indicate for each 
link whether it is a (potential) manifestation of a hidden 
common cause for the two linked variables. The structural 
EM algorithm (Friedman, 1998) learns a structure using a 
fixed set of previously given latents. By searching for 
“structural signatures” of latents, the FindHidden 
algorithm (Elidan et al., 2000) detects substructures that 
suggest the presence of latents in the form of dense 
subnetworks. Elidan and Friedman (2001) give a fast 
algorithm for determining the cardinality of latent variables 
introduced this way. However, Silva et al. (2006) suspected 
that FindHidden cannot always find a pure measurement 
sub-model, which is a flaw in causal analysis. Also, the 
recovery of latent trees of binary and Gaussian variables 
has been suggested (Pearl, 2000). Hierarchical latent class 
(HLC) models, which are rooted trees where the leaf nodes 
are observed while all other nodes are latent, were 
proposed for clustering (Zhang, 2004). Two greedy 
algorithms are suggested (Harmeling and Williams, 
2011) to expedite learning the structure of a binary HLC 
and the cardinalities of the latents. The BIN-G 
algorithm determines both the structure of the tree and 
the cardinality of the latent variables in a bottom-up 
fashion. The BIN-A algorithm first determines the tree 
structure using agglomerative hierarchical clustering 
and then determines the cardinality of the latent 
variables in the same manner as the BIN-G algorithm. 



 

Latent-tree models are also used to speed approximate 
inference in BN, trading the approximation accuracy 
with inferential complexity (Wang et al., 2008). 

Models in which multiple latents may have multiple 
indicators (observed children), also known as multiple 
indicator models (MIMs) (Bartholomew et al., 2002; 
Spirtes, 2013), are a very important subclass of structural 
equation models (SEM), which are widely used, together 
with BNs, to analyze causal relations (Shimizu et al., 
2011). For these models, and others that are not tree-
constrained, most of the mentioned algorithms may lead to 
unsatisfactory results. This is one of the most difficult 
problems in machine learning and statistics since, in 
general, a joint distribution can be generated by an infinite 
number of different LVMs. However, an algorithm that 
fills the gap between learning latent-tree models and 
learning MIMs is BuildPureClusters (BPC; Silva et al., 
2006). BPC searches for the set (an equivalence class) of 
MIMs that best matches the set of vanishing tetrad 
differences (Scheines et al., 1995), but is limited to linear 
models (Spirtes, 2013). 

In this study, we make another attempt in this direction and 
target the goal of Silva et al. (2006), but concentrate on the 
discrete case, rather than on the continuous case dealt by 
BPC, using ideas and principles of clustering. Interestingly, 
the same difficulty in learning MIMs is also faced in the 
domain of unsupervised learning that confronts similar 
questions such as: (1) How many clusters are there in the 
observed data? and (2) Which classes do the clusters really 
represent? Due to this similarity, we propose a concept and 
an algorithm that link learning an LVM and clustering 
analysis. Using the pairwise cluster comparison (PCC) 
concept, we compare pairwise clusters of data points 
representing instantiations of the observed variables to 
identify those pairs of clusters that exhibit major changes 
in the observed variables due to changes in their ancestor 
latent variables. Changes in a latent variable that are 
manifested in changes in the observed variables reveal this 
latent variable and its causal paths of influence in the 
domain. Using the learning PCC (LPCC) algorithm, we 
learn an LVM. We identify PCCs and use them to learn 
latent variables – exogenous and endogenous (the latter 
may be either colliders or non-colliders) – and their causal 
interrelationships as well as their children (latent variables 
and observed variables) and causal paths from latent 
variables to observed variables. 

2. LVM LEARNING 

The goal of our study is to reconstruct an LVM from i.i.d. 
data sampled from the observed variables in an unknown 
model. First, we present the assumptions that LPCC makes 
and the constraints it applies on LVM and compare them 
to those required by other state-of-the-art methods. 

Assumption 1 The underlying model is a Bayesian 
network, BN=<G,𝚯>, encoding a discrete joint probability 
distribution P for a set of random variables 𝐕 = 𝐋 ∪ 𝐎, 
where G=<V,𝐄> is a directed acyclic graph (DAG) whose 
nodes 𝐕 correspond to latents 𝐋 and observed variables 𝐎, 
and E is the set of edges between nodes in G. 𝚯 is the set 
of parameters, i.e., the conditional probabilities of 
variables in V given their parents. 

Assumption 2 No observed variable in O is an ancestor of 
any latent variable in L. This property is called the 
measurement assumption (Spirtes et al., 2000). 

Before we present additional assumptions about the 
learned LVM, we need Definitions 1–4 (following Silva et 
al., 2006), which are specific to LVM: 

Definition 1 A model satisfying Assumptions 1 and 2 is a 
latent variable model. 

Definition 2 Given an LVM G with a variable set V, the 
subgraph containing all variables in V and all and only 
those edges directed into variables in O is called the 
measurement model of G. 

Definition 3 Given an LVM G, the subgraph containing all 
and only G’s latent nodes and their respective edges is 
called the structural model of G. 

When each model variable is a linear function of its parents 
in the graph plus an additive error term of positive finite 
variance, the latent variable model is linear; this is also 
known as SEM. In this study, we dispense with the linearity 
assumption and apply the above concepts to learn not 
necessarily linear MIMs or latent-tree models. Our 
suggested concept, LPCC, is not limited by the linearity 
assumption and learns a model as long as it is MIM. In 
addition, we are interested in discrete LVMs. Another 
important definition we need is: 

Definition 4 A pure measurement model is a measurement 
model in which each observed variable has only one latent 
parent and no observed parent. 

Assumption 3 The measurement model of G is pure. 

As a principled way of testing conditional independence 
among latents, Silva et al. (2006) focus on MIMs, which 
are pure measurement models. Practically, these models 
have a smaller equivalence class of the latent structure than 
that of non-pure models and thus are easier to learn 
unambiguously. 

LPCC does not assume that the true measurement model is 
linear (which is a parametric assumption that e.g., BPC 
makes), but rather assumes that the model is pure (a 
structural assumption). When the true causal model is pure, 
LPCC will identify it correctly (or find its pattern). When 



 

it is not pure, LPCC – similarly to BPC (Silva et al., 2006) 
– will learn a pure sub-model of the true model using two 
indicators for each latent (compared to three indicators per 
latent that are required by BPC). In addition, LPCC 
assumes that: 

Assumption 4 The true model G is MIM, in which each 
latent has at least two observed children and may have 
latent parents. 

Causal structure discovery – learning the number of latent 
variables in the model, their interconnections and 
connections to the observed variables, as well as the 
interconnections among the observed variables – is very 
difficult and thus requires making some assumptions about 
the problem. Particularly, MIMs, in which multiple 
observed variables are assumed to be affected by latent 
variables and perhaps by each other (Spirtes, 2013), are 
reasonable models but have attracted scant attention in the 
machine-learning community. By assuming that the true 
model manifests local influence of each latent variable on 
at least a small number of observed variables, Silva et al. 
(2006) showed that learning the complete Markov 
equivalence class of MIM is feasible. Similar to Silva et al. 
(2006), we assume that the true model is MIM. 

3. PRELIMINARIES TO LPCC 

Figure 1 sketches a range of MIMs, which all exhibit pure 
measurement models, presenting a range of challenges to 
an LVM learning algorithm. Compared to G1, which is a 
basic MIM of two unconnected latents, G2 shows a 
structural model that is characterized by a latent collider. 
Note that such an LVM cannot be learned by latent-tree 
algorithms such as in Zhang (2004). G3 and G4 
demonstrate serial and diverging structural models, 
respectively, that together with G2 cover the three basic 
structural models. G5 and G6 manifest more complex 
structural models comprising a latent collider and a 
combination of serial and diverging connections. 

In Section 3.1, we show that learning pairwise cluster 
comparison relies on understanding the influence of the 
exogenous latent variables on the observed variables in the 
LVM. This influence is divided into major and minor 
effects that are introduced and explained in Section 3.2. In 
Section 3.3, we link this structural influence to data 
clustering and introduce the pairwise cluster comparison 
concept for learning an LVM. 

3.1 THE INFLUENCE OF EXOGENOUS LATENTS 

We distinguish between observed (𝐎) and latent (𝐋) 
variables and between exogenous (EX) and endogenous 
(EN) variables. EX have zero in-degree, are autonomous, 
and unaffected by the values of the other variables (e.g., L1 
in all graphs but G4 in Figure 1), whereas EN are all non-
exogenous variables in G (e.g., L2 in all graphs but G1 and 
G4, and X1 in all graphs in Figure 1). We identify three 

types of variables: (1) Exogenous latents, 𝐄𝐗 ⊂ (𝐋 ∩ 𝐍𝐂) 
[all exogenous variables are latent non-colliders (NC)]; (2) 
Endogenous latents, 𝐄𝐋 ⊂ (𝐋 ∩ 𝐄𝐍), which are divided 
into latent colliders 𝐂 ⊂ 𝐄𝐋 (e.g., L2 in G2 and G5; note 
that all latent colliders are endogenous) and latent non-
colliders (in serial and diverging connections) 𝐒 ⊂ (𝐄𝐋 ∩
𝐍𝐂) (e.g., L3 in G3, G4, and G6), thus 𝐍𝐂 = (𝐄𝐗 ∪ 𝐒); and 
(3) Observed variables, 𝐎 ⊂ 𝐄𝐍, which are always 
endogenous and childless, that are divided into children of 
exogenous latents 𝐎𝐄𝐗 ⊂ 𝐎 (e.g., X1 and X9 in G2), 
children of latent colliders 𝐎𝐂 ⊂ 𝐎 (e.g., X4, X5, and X6 
in G2), and children of endogenous latent non-colliders 
𝐎𝐒 ⊂ 𝐎 (e.g., X4, X5, and X6 in G3). We denote value 
configurations of EX, EN (when we do not know whether 
the endogenous variables are latent or observed), EL, C, 
NC (when we do not know whether the non-collider 
variables are exogenous or endogenous), S, O, OEX, OC, 
and OS by ex, en, el, c, nc, s, o, oex, oc, and os, 
respectively. 

In this paper, we claim and demonstrate that the influence 
of exogenous (latent) variables on observed variables is 
fundamental to learning an LVM and introduce LPCC that 
identifies and exploits this influence on learning an MIM. 
In this section, we prove that changes in values of the 
observed variables are due to changes in values of the 
exogenous variables and thus the identification of the 
former indicates the existent of the latter. To do that, we 
analyze the propagation of influence along paths 
connecting both variables, remembering that the paths may 
contain latent colliders and latent non-colliders. First, 
however, we should analyze paths among the latents and 
only then paths ending in their sinks (i.e., the observed 
variables). 

While BPC (Silva et al., 2006) needs to make a parametric 
assumption about the linearity of the model, LPCC 
assumes on the model structure (Assumption 3 above and 
Assumption 5 below). This is also the approach of latent-
tree algorithms (Zhang, 2004; Harmeling and Williams, 
2011; Wang et al., 2008) that restrict the learned structure 
to a tree (note that LPCC is not limited to a tree because it 
allows latent variables to be colliders). This shows a 
tradeoff between the structural and parametric assumptions 
that an algorithm for learning an LVM usually has to make; 
the fewer parametric assumptions the algorithm makes, the 
more structural assumptions it has to make and vice versa. 

Assumption 5 A latent collider does not have any latent 
descendants. 

To distinguish between latent colliders and latent non-
colliders, their observed children, and their connectivity 
patterns to their exogenous variables, we use Lemma 1. 
Latent colliders and their observed children are connected 
to several exogenous variables via several directed paths, 
whereas latent non-colliders and their observed children 
are connected only to a single exogenous variable via a 



 

single directed path [the necessary Definitions 5-7 are in a 
supplementary material file (SMF)]. Use of these different 
connectivity patterns – from exogenous latents through 
endogenous latents (both colliders and non-colliders) to 
observed variables – simplifies the analysis of the influence 
of latents on observed variables. Proposition 1 quantifies 
these patterns through the joint probability distribution. 

Lemma 1 1) Each latent non-collider 𝑁𝐶𝑡 has only one 
exogenous latent ancestor 𝐸𝑋𝑁𝐶𝑡

, and there is only one 
directed path 𝑇𝑁𝐶𝑡

 from 𝐸𝑋𝑁𝐶𝑡
(source) to 𝑁𝐶𝑡 (sink). Note 

that we use the notation 𝑁𝐶𝑡, rather than 𝑆𝑡, since the 
Lemma applies to both exogenous and endogenous latent 
non-colliders. 2) Each latent collider 𝐶𝑗 is connected to a 
set of exogenous latent ancestors 𝐄𝐗𝐶𝑗

 via a set of directed 
paths 𝐓𝐶𝑗

 from 𝐄𝐗𝐶𝑗
 (sources) to 𝐶𝑗 (sink). 

Proposition 1 The joint probability over V due to value 
assignment ex to exogenous set EX is determined only by 
this assignment and the BN conditional probabilities. 

3.2 MAJOR AND MINOR EFFECTS & VALUES 

So far, we have analyzed the structural influences (path 
of hierarchies) of the latents on the observed variables. 
In this section, we complement this analysis with the 
parametric influences, which we divide into major and 
minor effects. First, we define local influence on a 
single EN of its direct parents. Second, we use local 
influences and the BN Markov property to generalize 
the influence of EX on EN. Third, exploiting the 
connectivity between the exogenous ancestors and their 
endogenous descendants, as described by Lemma 1, we 
focus on the influence of a specific (partial) set of 
exogenous variables on the values of their endogenous 
descendants. Analysis of the influence of all 
configurations exs on all ens and that of the 
configurations of specific exogenous ancestors in these 
exs on their endogenous descendants enable learning 
the structure and parameters of the model and causal 
discovery. In Section 3.3, we show how these concepts 
can be exploited to learn an LVM from data clustering. 

Definition 8 (definition and assumption numbers 
consider all those in the SMF) A local effect on an 
endogenous variable EN is the influence of a 
configuration of EN’s direct latent parents on any of 
EN’s values. Following, we define a major local effect 
as the largest local effect on EN and a minor local effect 
as any non-major local effect on EN. 

A major local effect on 𝐸𝑁𝑖 is identified by the maximal 
conditional probability of a specific 𝑒𝑛𝑖 given a 
configuration 𝐩𝐚𝑖 of 𝐸𝑁𝑖’s latent parents 𝐏𝐚𝒊, such that 
𝑀𝐴𝐸𝐸𝑁𝑖

(𝐩𝐚𝑖) = 𝑚𝑎𝑥𝑒𝑛𝑖
′{𝑃(𝐸𝑁𝑖 = 𝑒𝑛𝑖

′|𝐏𝐚𝒊 = 𝐩𝐚𝑖)}. 
All probabilities of other values of 𝐸𝑁𝑖 conditioned on 
𝐩𝐚𝑖 that are smaller than 𝑀𝐴𝐸𝐸𝑁𝑖

(𝐩𝐚𝑖) identify the 
minor local effect set, 𝑀𝐼𝐸𝑆𝐸𝑁𝑖

(𝐩𝐚𝑖). Similarly, the 

major local value is the 𝑒𝑛𝑖 corresponding to 
𝑀𝐴𝐸𝐸𝑁𝑖

(𝐩𝐚𝑖), i.e., the most probable value of 𝐸𝑁𝑖 due 
to 𝐩𝐚𝑖, 𝑀𝐴𝑉𝐸𝑁𝑖

(𝐩𝐚𝑖) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑒𝑛𝑖
′{𝑃(𝐸𝑁𝑖 =

𝑒𝑛𝑖
′|𝐏𝐚𝒊 = 𝐩𝐚𝑖)}. A minor local value is an 𝑒𝑛𝑖 

corresponding to a minor local effect, and 
𝑀𝐼𝑉𝑆𝐸𝑁𝑖

(𝐩𝐚𝑖) is the set of all minor values that 
correspond to 𝑀𝐼𝐸𝑆𝐸𝑁𝑖

(𝐩𝐚𝑖). When 𝐸𝑁𝑖 is an observed 
variable or an endogenous latent non-collider, and thus 
has only a single parent 𝑃𝑎𝒊, the configuration 𝐩𝐚𝑖 is 
actually the value 𝑝𝑎𝑖  of 𝑃𝑎𝑖 . 

We: 1) assume (Assumption 6) that for every endogenous 
variable 𝐸𝑁𝑖 in G and every configuration 𝐩𝐚𝑖

′ of 𝐸𝑁𝑖’s 
parents 𝐏𝐚𝑖, there exists a certain value 𝑒𝑛𝑖

′ of 𝐸𝑁𝑖, s.t. 
𝑃(𝐸𝑁𝑖 = 𝑒𝑛𝑖

′|𝐏𝐚𝑖 = 𝐩𝐚𝑖
′) > 𝑃(𝐸𝑁𝑖 = 𝑒𝑛𝑖

′′|𝐏𝐚𝑖 = 𝐩𝐚𝑖
′) 

for every other value 𝑒𝑛𝑖
′′ of 𝐸𝑁𝑖 (Pearl, 1988); 2) prove 

(Proposition 2 in the SMF ) that 𝑀𝐴𝑉𝐸𝑁𝑖
(𝐩𝐚′𝑖) is certain 

given a certain 𝐩𝐚𝑖
′; and 3) assume (Assumption 7) that a) 

for every 𝐸𝑁𝑖 that is an observed variable or an 
endogenous latent non-collider and for every two 
values 𝑝𝑎𝑖

′ and 𝑝𝑎𝑖
′′ of 𝑃𝑎𝑖 , 𝑀𝐴𝑉𝐸𝑁𝑖

(𝑝𝑎′𝑖) ≠
𝑀𝐴𝑉𝐸𝑁𝑖

(𝑝𝑎′′𝑖), and b) for every 𝐶𝑗 that is a latent 
collider and for every 𝑃𝑎𝑗 ∈ 𝐏𝐚𝑗, there are at least two 
configurations 𝐩𝐚𝑗

′  and 𝐩𝐚𝑗
′′ of 𝑷𝒂𝑗 in which only the value 

of 𝑃𝑎𝑗  is different and 𝑀𝐴𝑉𝐶𝑗
(𝐩𝐚′𝑗) ≠ 𝑀𝐴𝑉𝐶𝑗

(𝐩𝐚′′𝑗). 

By aggregation over all local influences, we can now 
generalize these concepts through the BN parameters 
and Markov property from local influences on specific 
endogenous variables to influence on all endogenous 
variables in the graph. 

Then, we define (Definition 9): 1) an effect on EN as the 
influence of a configuration ex of EX on EN; 2) a major 
effect (MAE) as the largest effect of ex on EN and a 
minor effect (MIE) as any non-MAE effect of ex on EN; 
and 3) a major value configuration (MAV) as the 
configuration en of EN corresponding to MAE (i.e., the 
most probable en due to ex), and a minor value 
configuration is a configuration en corresponding to 
any MIE. 

A configuration en of EN in which each variable in EN 
takes on the major local value is major or a MAV. Any 
effect in which at least one EN takes on a minor local 
effect is minor, and any configuration in which at least 
one EN takes on a minor local value is minor. We denote 
the set of all minor effects for ex with 𝑀𝐼𝐸𝑆(𝐞𝐱) (with 
correspondence to 𝑀𝐼𝐸𝑆𝐸𝑁𝑖

) and the set of all minor 
configurations with 𝑀𝐼𝑉𝑆(𝐞𝐱) (with correspondence to 
𝑀𝐼𝑉𝑆𝐸𝑁𝑖

). 

Now, we are interested in representing the influence on 
a subset of the endogenous variables of the subset of the 
exogenous variables that impact these endogenous 
variables. This partial representation of MAE will 
enable LPCC to recover the relationships between 
exogenous ancestors and only the descendants that are 



 

affected by these exogenous variables. To achieve this, 
we first extend the concept of effect to the concept of 
partial effect of specific exogenous variables and then 
quantify it. 

We separately analyze the partial effect (Definition 10 
in the SMF) of each exogenous variable on each 
observed variable for which the exogenous is its 
ancestor and all the latent variables along the path 
connecting these two and distinguish between two 
cases: (1) Observed descendants in OEX and OS that 
are, respectively, children of exogenous latents and 
children of latent non-colliders that are linked to their 
exogenous ancestors, each via a single directed path 
(e.g., the partial effect of a value of L3 in G5 (Figure 1) 
on {L4, L5, X13}); and (2) Observed descendants in OC 
that are children of latent colliders and linked to their 
exogenous ancestors via a set of directed paths through 
their latent collider parents (e.g., the partial effect of a 
configuration of 𝐄𝐗𝐶𝑘

= 𝐄𝐗L4 = {L1, L5} in G6 (Figure 1) 
on {L2, L3, L4, X11}). 

In the SMF, we provide detailed descriptions for these 
partial effects and values for observed children of latent 
non-colliders (Case 1) and observed children of latent 
colliders (Case 2) and formalize their properties 
(Propositions 3–7) to set the stage for Lemma 2. 

Lemma 2 1) A latent non-collider 𝑁𝐶𝑣 and its observed 
child 𝑂𝑁𝐶𝑣, both descendants of an exogenous variable 
𝐸𝑋𝑁𝐶𝑣

, change their values in any two major configurations 
if and only if 𝐸𝑋𝑁𝐶𝑣

 has changed its value in the 
corresponding two configurations of EX.; and 2) A latent 
collider 𝐶𝑘 and its observed child 𝑂𝐶𝑘, both descendants of 
a set of exogenous variables 𝐄𝐗𝐶𝑘

, change their values in 
any two major configurations, only if at least one of the 
exogenous variables in 𝐄𝐗𝐶𝑘

 has changed its value in the 
corresponding two configurations of EX. 

3.3 PCC BY DATA CLUSTERING 

Practically, we use observational data that were 
generated from an unknown LVM and measured over 
the observed variables. Proposition 1 showed us that 
each configuration of observed variables (which is part 
of a configuration of the endogenous variables) and 
their joint probability is a result of an assignment of a 
configuration ex to the exogenous variables EX. 
Therefore, we 1) define (Definition 11) an observed 
value configuration, observed major value 
configuration, and observed minor value configuration 
due to ex that are the parts in en, MAV, and a minor 
value configuration, respectively, that correspond to the 
observed variables; and 2) prove (Propositions 8 and 9 
in the SMF) that a) there is only a single observed major 
value configuration to each exogenous configuration ex; 
and b) there are different observed major value 
configurations to different exogenous configurations exs. 

Due to the probabilistic nature of BN, each observed 
value configuration due to ex may be represented by 
several data points. Clustering these data points may 
produce several clusters for each ex, and each cluster 
corresponds to another observed value configuration. 
Based on Propositions 8 and 9, one and only one of the 
clusters corresponds to each of the observed major 
value configurations, whereas the other clusters 
correspond to observed minor value configurations. We 
distinguish between these clusters using the following 
definition: 

Definition 12 The single cluster that corresponds to the 
observed major value configuration, and thus also 
represents the major effect 𝑀𝐴𝐸(𝐞𝐱) due to 
configuration 𝐞𝐱, is the major cluster for 𝐞𝐱, and all the 
clusters that correspond to the observed minor value 
configurations due to minor effects in 𝑀𝐼𝐸𝑆(𝐞𝐱) are 
minor clusters. 

To resolve between different types of minor 
effects/clusters, we make two definitions. 

Definition 13 A k-order minor effect is a minor effect 
in which exactly k endogenous variables in EN 
correspond to minor local effects. An en corresponding 
to a k-order minor effect is a k-order minor value 
configuration. 

Definition 14 Minor clusters that correspond to k-order 
minor effects are k-order minor clusters. 

Based on Proposition 9 and Definition 12, the set of all 
major clusters (corresponding to all observed major 
value configurations) reflects the effect of all possible 
exs, and thus the number of major clusters is expected 
to be equal to the number of EX configurations. 
Therefore, the identification of all major clusters is a 
key to the discovery of exogenous variables and their 
causal interrelations. For this purpose, we introduce the 
concept of pairwise cluster comparison (PCC). PCC 
measures the differences between two clusters; each 
represents the response of LVM to another ex. 

Definition 15 Pairwise cluster comparison is a 
procedure by which pairs of clusters are compared, for 
example, through a comparison of their centroids. The 
result of PCC between a pair of cluster centroids of 
dimension |𝐎|, where 𝐎 is the set of observed variables, 
can be represented by a binary vector of size |𝐎| in 
which each element is 1 or 0 depending, respectively, 
on whether or not there is a difference between the 
corresponding elements in the compared centroids. 

When PCC is between clusters that represent observed 
major value configurations (i.e., PCC between major 
clusters), an element of 1 identifies an observed 
variable that has changed its value between the 



 

compared clusters due to a change in ex. Thus, the 1s in 
a major-major PCC provide evidence of causal 
relationships between EX and 𝐎. Practically, LPCC 
always identifies all observed variables that are 
represented by 1s together in all PCCs as the observed 
descendants of the same exogenous variable (Section 
4.1). However, due to the probabilistic nature of BN and 
the existence of endogenous latents (mediating the 
connections from EX to 𝐎), some of the clusters are k-
order minor clusters (in different orders), representing 
k-order minor configurations/effects. Minor clusters are 
more difficult to identify than major clusters because 
the latter reflect the major effects of EX on EN and, 
therefore, are considerably more populated by data 
points than the former. Nevertheless, minor clusters are 
important in casual discovery by LPCC even though a 
major-minor PCC cannot tell the effect of EX on EN 
because an observed variable in two compared (major 
and minor) clusters should not necessarily change its 
value as a result of a change in ex. Their importance is 
because a major cluster, which is a zero-order minor 
value configuration and thus has zero minor values, 
cannot indicate (when compared with another major 
cluster) the existence of minor values. On the contrary, 
PCC between major and minor clusters shows (through 
the number of 1s) the number of minor values 
represented in the minor cluster, and this is exploited by 
LPCC for identifying the endogenous latents and 
interrelations among them (Section 4.4). That is, PCC 
is the source to identify causal relationships in the 
unknown LVM; major-major PCCs are used for 
identifying the exogenous variables and their 
descendants, and major-minor PCC are used for 
identifying the endogenous latents, their interrelations,  
and their observed children. 

4. OVERVIEW OF LPCC 

To demonstrate the relations between clustering results 
and learning an LVM, we use G1 in Figure 1 that has 
two exogenous variables, L1 and L2, each having three 
observed children [assume all variables are binary, i.e., 
L1 and L2 have four possible exs (L1L2= 00, 01, 10, 
11)]. We generated a synthetic data set of 1,000 patterns 
from G1 over the six observed variables, used a uniform 
distribution over L1 and L2, and set the probabilities of 
an observed child, 𝑋𝑖, 𝑖 = 1, … ,6, given its latent parent, 
𝐿𝑘 , 𝑘 = 1,2, to be 𝑃(𝑋𝑖 = 𝑣|𝐿𝑘 = 𝑣) = 0.8, 𝑣 = 0,1. 
Using the self-organizing map (SOM) (Kohonen, 
1997), we clustered the data set and found 16 clusters, 
of which four were major (see below how to identify 
major clusters). This meets our expectation of four 
major clusters corresponding to the four possible exs 
(these clusters are presented in Table 1a in the SMF by 
their centroids, which are the most prevalent patterns in 
the clusters, and in Table 1b by their PCCs). For 
example, PCC1,2, comparing clusters C1 and C2, shows 
that when moving from C1 to C2, only the values 
corresponding to variables X1, X2, and X3 have been 

changed (i.e., 𝛿𝑋1 = 𝛿𝑋2 = 𝛿𝑋3 = 1 in Table 1b). Lemma 
2 guarantees that the three variables are descendants of the 
same EX that changed its value between two exs 
represented by C1 and C2. PCC1,4, PCC2,3, and PCC3,4 
enforce this conclusion. Indeed, we know from the true 
graph, G1, that this EX is latent L1. A similar conclusion 
can be deduced about X4, X5, and X6, as descendants of 
an exogenous latent, which we know, is L2. 

LPCC is fed by data that is sampled from the observed 
variables in the unknown model (Figure 2 in the SMF). It 
clusters the data using SOM (any other clustering 
algorithm is good as well), and selects an initial set of 
major clusters. Then, LPCC learns LVM in two stages. In 
the first stage, LPCC identifies exogenous latent variables 
and latent colliders (without distinguishing them yet) and 
their corresponding observed descendants before 
distinguishing them. LPCC iteratively improves the 
selection of the major clusters, and the entire stage is 
repeated until convergence. In the second stage, LPCC 
identifies endogenous latent non-colliders with their 
children. Because this stage cannot distinguish from the 
outset between latent non-colliders and their latent 
ancestors, LPCC also needs to apply a mechanism to split 
these two types of latent variables from each other and to 
find the links between them after the split. 

4.1 IDENTIFICATION OF EXOGENOUS LATENT 

VARIABLES AND LATENT COLLIDERS 

Table 1b shows that PCC1,2 (and PCC3,4) provides 
evidence that X1, X2, and X3 may be descendants of the 
same exogenous latent (L1, as we know) that has changed 
its value between the two exs represented by C1 and C2. 
Relying only on one PCC may be inadequate when 
concluding that these variables are descendants of the same 
exogenous latent because there may be other exogenous 
latents that have changed their values too. Table 1b shows 
that PCC2,3 (and PCC1,4) provides the same evidence 
about X1, X2, and X3. But, PCC2,3 and PCC1,4 also show 
that the values corresponding to X4, X5, and X6 have been 
changed together too, whereas these values did not change 
in PCC1,2 and PCC3,4. Because X4, X5, and X6 changed 
their values only in PCC2,3 but not in PCC1,2, they cannot 
be descendants of L1. This insight strengthens the evidence 
that X1, X2, and X3 are the only descendants of L1. A 
similar analysis using PCC1,3 and PCC2,4 will identify 
that X4, X5, and X6 are descendants of another latent 
variable (L2, as we know). Thus, we define (Definition 16) 
an MSO as the maximal set of observed variables that 
always changes its values together in each major-major 
PCC in which at least one of the variables changes value. 
For example, X1 (Table 1) changes its value in PCC1,2, 
PCC1,4, PCC2,3, and PCC3,4 and always together with 
X2 and X3 (and vice versa). Thus {X1, X2, X3} (and 
similarly{X4, X5, X6}) is an MSO. Each MSO includes 
descendants of the same latent variable L, and after 
considering all PCCs, LPCC learns MSOs for all latent 
variables. 



 

Based on any identified MSO, LPCC introduces to the 
learned graph a new latent variable L together with all the 
observed variables that are included in this MSO as its 
children. At this stage, LPCC cannot yet distinguish 
between exogenous latents and latent colliders since the 
main goal at this stage is to identify latent variables. For 
now, LPCC focuses on the identification of the relations 
between the latents and the observed variables, but not on 
the identification of the interrelations between the latents. 
The latter task that is needed for distinguishing the collider 
latents from the exogenous latents is performed in a further 
step (Section 4.2). Note, however, that the identification of 
endogenous non-collider latents needs a different analysis 
that is based on major-minor PCCs and not on major-major 
PCCs, and thus it is described separately in Section 4.4. 

To formalize this identification step (Theorem 1), we 1) 
define (Definition 17) that a given binary relation (i.e., 
between two elements) ~ on a set A is said to be an 
equivalence relation if and only if it is reflexive (a ~ a), 
symmetric (if a ~ b then b ~ a), and transitive (if a ~ b and        
b ~ c, then a ~ c) for all a, b, and c in A. The equivalence 
class of a under ~, denoted [a], is defined as: [𝑎] =
{𝑏 ∈ 𝑨|𝑏 ∼ 𝑎} (Enderton, 1977); and 2) prove (Lemma 3 
in SMF) that the relation “always changes together with” 
on the set O of all observed variables, such as “variable 
𝑂𝑖 ∈ 𝐎 always changes together with variable 𝑂𝑗 ∈ 𝐎 in 
each PCC in which either 𝑂𝑖  or 𝑂𝑗 has changed” is an 
equivalence relation. Each equivalence class for this 
relation comprises an MSO. Theorem 1 guarantees that 
each of multiple latent variables (an exogenous or any of 
its non-collider descendants or a collider) is identified by 
its own MSO, regardless of the latent cardinality. 

Theorem 1 Variables of a particular MSO are children of 
a particular exogenous latent variable EX or its latent non-
collider descendant or children of a particular latent 
collider C. 

4.2 DISTINGUISHING LATENT COLLIDERS 

After identifying the exogenous latents and latent 
colliders together, we need to separate them. To 
demonstrate that, we use graph G2 in Figure 1, which 
shows two exogenous latent variables, L1 and L3, that 
collide in one endogenous latent variable, L2 (assume 
all latent variables are binary and each has three binary 
observed children). Having two exogenous variables, 
we expect to find four major clusters in the data 
generated from G2; each corresponds to one of the four 
possible exs (L1L3= 00, 01, 10, 11). We expect the 
values of X1, X2, and X3 to change together in all the 
PCCs in which the value of L1 changes, and the values 
of X7, X8, and X9 to change together in all the PCCs in 
which the value of L3 changes. However, the values of 
X4, X5, and X6 will change together with those of X1, 
X2, and X3 in part of the PCCs and together with those 
of X7, X8, and X9 in the remaining PCCs, but always 
together in all of the PCCs. This will be evidence that 

X4, X5, and X6 are descendants of the same latent 
variable (L2, as we know), which is a collider of L1 and 
L3. 

To learn that an already learned latent variable L is a 
collider for a set of other already learned (exogenous) 
latent ancestor variables 𝐋𝐀 ⊂ 𝐄𝐗, LPCC requires that: 
(1) The values of the children of L will change with the 
values of descendants of different latent variables in LA 
in different parts of major-major PCCs; and (2) The 
values of the children of L will not change in any PCC 
unless the values of descendants of at least one of the 
variables in LA change. This insures that L does not 
change independently of latents in LA that are L’s 
ancestors. We formalize this identification step in 
Theorem 2: 

Theorem 2 A latent variable L is a collider of a set of 
latent ancestors 𝐋𝐀 ⊂ 𝐄𝐗 only if: (1) The values of the 
children of L change in different parts of some major-
major PCCs each time with the values of descendants 
of another latent ancestor in LA; and (2) The values of 
the children of L do not change in any PCC unless the 
values of descendants of at least one of the variables in 
LA change too. 

4.3 STRATEGY FOR CHOOSING MAJOR 

CLUSTERS 

In this problem of unsupervised identification of latent 

variables given only observational data, LPCC has to deal 

with lack of prior information regarding the distribution of 

each latent variable. Therefore, in its first iteration, LPCC 

assumes a uniform distribution over the latents and selects 

the major clusters based only on cluster size, which is the 

number of patterns clustered by the cluster. Clusters that 

are larger than the average cluster size are selected as 

majors. However, this initial selection may generate false 

negative errors for skewed distributions, where a rare value 

of a latent will be represented only by small clusters that 

could not be chosen as majors. Also, the initial selection 

may perform a false positive error, e.g., as a result of a very 

weak influence of L on any of its children 𝑋𝑖, i.e., 

𝑃(𝑋𝑖 = 𝑣1|𝐿 = 𝑣) ≅ 𝑃(𝑋𝑖 = 𝑣2|𝐿 = 𝑣). This may lead to 

splitting a data cluster that represents a configuration in 

which 𝐿 = 𝑣 into two clusters with almost the same size, 

and, when enough samples exist in both clusters, accepting 

both as major clusters instead of only one. 

To avoid the possible errors due to skewed data and 
circumstances that undermine identifiability, LPCC 
decides on major clusters iteratively. After learning a graph 
based on the initial selection of major clusters based on 
their sizes, it becomes possible to learn the cardinalities of 
the latent variables and consequently find all possible exs 
(Section 4.1). Then, for each ex, we can select the most 
probable cluster given the data and use it as an update to 
the major cluster that represents this ex. Using an EM-style 



 

procedure (Dempster et al., 1977), the set of major 
clusters can be updated iteratively and probabilistically and 
augment LPCC to learn more accurate graphs. This process 
can be repeated until convergence to a final graph (Figure 
2). Since the final graph depends on the initial graph, the 
iterative approach cannot guarantee finding the optimal 
model, but only improving the initial graph. 

4.4 IDENTIFICATION OF LATENT NON-

COLLIDERS 

Based on major-major PCCs, all the endogenous latent 

non-colliders that are descendants of an exogenous 

variable EX were temporarily combined with EX, and all 

the observed children of these latent non-colliders were 

temporarily combined with the direct children of EX (see 

example for G3 in Figure 1 in the SMF). LPCC splits latent 

non-colliders from their previously learned ancestor 

together with their observed children using major-minor 

PCCs. 

A major-minor PCC is between a major cluster and a 

first-order minor cluster (1-MC). A 1-MC is a cluster 

that corresponds to a 1-order minor value configuration 

(Definitions 13 and 14), which exists when exactly one 

endogenous variable in EN (either latent or observed) 

has a minor local value (Definition 13) as a response to 

a value 𝑒𝑥 ∈ 𝐞𝐱 that 𝐸𝑋 ∈ 𝐄𝐗 has obtained. By 

analyzing, for each exogenous EX, PCCs between 1-

MCs and the major clusters that identified EX, LPCC 

reveals the existence of the latent non-colliders that 

were previously combined with EX (Section 4.1). 

Following that, LPCC splits these non-colliders from 

EX. We will show that if only one observed variable 

changes in such PCCs (e.g., X9 in PCC1,3 in Table 3 in 

the SMF; C1 is major and C3 is 1-MC) as a response to 

ex, then the minor value in the 1-MC is of an observed 

descendant of EX. And, if two or more observed 

variables change in such PCCs (e.g., X7-X9 in PCC1,6 

in Table 4 in the SMF; C1 is major and C6 is 1-MC) as 

a response to ex, then the minor value in the 1-MC is 

due to a minor value of a latent non-collider descendant 

of EX. Thus, PCCs between 1-MCs and major clusters 

that show a change in the values of two or more 

observed variables provide evidence to the existence of 

an NC that should be split from its exogenous ancestor. 

In the SMF, we describe how LPCC finds the set of 1-

MCs and why and how the analysis of the PCCs 

between 1-MCs and major clusters is used to identify 

and split latent non-colliders from their exogenous 

ancestor. 

We are interested in PCCs between 1-MCs and major 

clusters that show two sets of two or more elements 

corresponding to the observed variables. Variables in 

each set have the same value, which is different than 

that of the other set. Following, we infer that each set is 

of a different latent than the one that was expected to be 

sole. We denote such PCC by 2S-PCC (i.e., PCC of 

“two sets”) and the corresponding 1-MC by 2S-MC 

(Definition 18 in the SMF). Thus, to identify a latent 

non-collider that was combined to an exogenous latent 

EX, we consider only the 2S-PCCs; these PCCs are the 

result of comparing all the 2S-MCs among the 1-MCs 

for EX with the major clusters that revealed EX. To 

formalize the identification step, we prove Lemma 4. 

Lemma 4 A latent non-collider NC is a descendant of an 

exogenous latent variable EX. 2S-PCC is PCC between 

a “two-set” first-order minor cluster 2S-MC due to a 

minor value in NC and a major cluster that identified 

EX. 𝐞𝐱′ and 𝐞𝐱′′ are two value configurations of EX that 

correspond to the compared clusters by 2S-PCC. When: 

 EX does not change values between 𝐞𝐱′ and 𝐞𝐱′′, all 

the elements in 2S-PCC corresponding to the 

observed descendants of the latent ancestors of NC 

(including EX) show no change (i.e., are 0), 

whereas the elements corresponding to the 

observed descendants of NC show a change (i.e., 

are 1), 

and when 

 EX changes values between 𝐞𝐱′ and 𝐞𝐱′′, all the 

elements in 2S-PCC corresponding to the observed 

descendants of the latent ancestors of NC 

(including EX) show a change (i.e., are 1), whereas 

the elements corresponding to the observed 

descendants of NC show no change (i.e., are 0). 

Similar to the MSO concept that was introduced for major-

major PCCs to identify exogenous latents, it is necessary 

to introduce also for 2S-PCCs a maximal set of observed 

variables (2S-MSO) that always change their values 

together in all 2S-PCCs. Thus, we define (Definition 19 in 

SMF) a 2S-MSO as the maximal set of observed variables 

that always change their values together in all 2S-PCCs. 

After computing all 2S-PCCs for EX, LPCC learns 2S-

MSOs for all these latent variables and thereby identifies 

all possible splits for EX. We prove (Theorem 3, SMF) that 

variables of a particular 2S-MSO are children of an 

exogenous latent variable EX or any of its descendant latent 

non-colliders NC. 

After splitting the latent non-collider descendants from 

their exogenous latent ancestor EX, we identify the links 

between these latents by proving (Proposition 10, SMF) 

that in 2S-PCCs in which only the observed children of 

a single latent change, the latent is 1) EX or its leaf 

latent non-collider descendant, if the connection is 

serial; or 2) EX’s leaf latent non-collider descendant, if 

the connection is diverging. 

Lemma 4 guarantees that the observed children of a 

latent non-collider NC1, which is a child of another 

non-collider NC2 (both are descendants of EX), will 

change in all 2S-PCCs with the observed children of 



 

NC2 except in a single additional 2S-PCC due to a 

minor value of NC1. 

Theorem 4 A latent non-collider NC1 is a direct child 

of another latent non-collider NC2 (both on the same 

path emerging in EX) only if: 

 In all 2S-PCCs for which EX does not change, 

the observed children of NC1 always change 

with those of NC2 and also in a single 2S-PCC 

without the children of NC2; and 

 In all 2S-PCCs for which a latent non-collider 

leaf descendant of EX does not change, the 

observed children of NC2 always change with 

those of NC1 and also in a single 2S-PCC 

without the children of NC1.   

LPCC uses Theorem 4 to identify the links between the 

split latents. In the serial connection, there are only two 

latents with observed children that change alone in 

some 2S-PCCs; that is EX and its leaf latent non-

collider descendant. However, LPCC cannot 

distinguish between them and thus finds all the links 

between these two latents as undirected. In the 

diverging connection, the observed children of EX 

never change alone (Proposition 10); thus, every latent 

with children that change alone in some 2S-PCCs can 

only be a leaf. Thereby, LPCC can identify the directed 

links among the latents repeatedly on each of the paths 

from EX to each of the leaves (Theorem 4). Still, LPCC 

needs to distinguish between the serial and diverging 

connections. In the case where the observed children of 

three or more latents change alone in some 2S-PCC, it 

is clear that it is a diverging connection. Then, LPCC 

treats these latents as leaves and returns directed paths 

from EX to each such leaf. However, in the case in 

which LPCC identifies that the observed children of 

exactly two latents change alone in some 2S-PCCs, it 

applies the analysis proposed in Theorem 4 to each of 

the latents, and if it obtains the same path with opposite 

directions, then LPCC considers it as a serial 

connection and returns the undirected path; otherwise, 

it considers it as a diverging connection and returns the 

two directed paths from EX. 

5. SUMMARY AND DISCUSSION 

We introduced the LPCC concept and algorithm for 

learning LVMs: 

1) LPCC learns the model in an unsupervised learning 

manner. That is, no assumptions about the number of 

latent variables and their interrelations and which 

observed variables are the children of which latents are 

made; 

2) LPCC combines learning graphical models with data 

clustering by using the PCC concept to analyze 

clustering results of discrete variables for learning 

LVMs; 

3) LPCC learns MIM, which is a large subclass of SEM; 

4) LPCC is not limited to latent-tree models and does not 

make special assumptions, such as linearity, about the 

distribution; 

5) LPCC assumes that the measurement model of the true 

graph is pure and that each latent has at least two 

indicators. However, if the true graph is not pure, 

LPCC learns a pure sub-model of the true model, if 

one exists; 

6) LPCC is a two-stage algorithm. First, LPCC learns the 

exogenous latents and the latent colliders, as well as 

their observed descendants, by utilizing pairwise 

comparisons between data clusters in the measurement 

space that may explain latent causes. Second, LPCC 

learns the endogenous latent non-colliders and their 

children by splitting these latents from their previously 

learned latent ancestors; and 

7) LPCC learns an equivalence class of the structural 

model of the true graph.
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Figure 1: MIMs that are based on a pure measurement model and structural models of different complexity 
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Definition 5 A path between two nodes 𝑉1 and 𝑉𝑛 in a graph G is a sequence of nodes {V1, ... ,Vn}, such that 

Vi and Vi+1 are adjacent in G, 1≤i<n, i.e., {𝑉𝑖 , 𝑉𝑖+1} ∈ 𝐄. 

Note that a unique set of edges is associated with each given path. Paths are assumed to be simple by defini-

tion; in other words, no node appears in a path more than once, and an empty path consists of a single node. 

Definition 6 A collider on a path {V1, ... , Vn} is a node Vi, 1<i<n, such that Vi−1 and Vi+1 are parents of Vi. 

Definition 7 A directed path 𝑇𝑉𝑛
 from 𝑉1 to 𝑉𝑛 in a graph G is a path between these two nodes, such that for 

every pair of consecutive nodes Vi and Vi+1, 1≤i<n on the path, there is an edge from Vi into Vi+1 in 𝐄. 𝑉1 is 

the source, and 𝑉𝑛 is the sink of the path. A directed path has no colliders. 

Lemma 1 

1) Each latent non-collider 𝑁𝐶𝑡 has only one exogenous latent ancestor 𝐸𝑋𝑁𝐶𝑡
, and there is only one di-

rected path 𝑇𝑁𝐶𝑡
 from 𝐸𝑋𝑁𝐶𝑡

(source) to 𝑁𝐶𝑡 (sink). 

Note that we use the notation 𝑁𝐶𝑡, rather than 𝑆𝑡, since the Lemma applies to both exogenous and en-

dogenous latent non-colliders. 

2) Each latent collider 𝐶𝑗 is connected to a set of exogenous latent ancestors 𝐄𝐗𝐶𝑗
 via a set of directed paths 

𝐓𝐶𝑗
 from 𝐄𝐗𝐶𝑗

 (sources) to 𝐶𝑗 (sink). 

Proof: 

1) If the latent non-collider is exogenous, 𝑁𝐶𝑡 = 𝐸𝑋𝑡, then 𝐸𝑋𝑁𝐶𝑡
= 𝐸𝑋𝑡, and 𝑇𝑁𝐶𝑡

 is the empty path con-

sisting of 𝐸𝑋𝑡. For example, 𝐸𝑋L3 = L3 and 𝑇L3 = L3 in Graphs G2 and G5 in Figure 1. If, however, 

the latent non-collider is endogenous, 𝑁𝐶𝑡 = 𝑆𝑡, and we assume by contradiction that it has more than 

one exogenous latent ancestor and thus more than one directed path from each exogenous ancestor to 𝑆𝑡 

(and according to Assumption 5 none of the paths passes through a collider) that collide at 𝑆𝑡, then 𝑆𝑡 is 

a collider. This is contrary to the assumption that 𝑁𝐶𝑡 is a non-collider. That is, 𝐸𝑋𝑆𝑡
 is the only exoge-

nous latent ancestor of 𝑆𝑡, and 𝑇𝑆𝑡
 is the only directed path from 𝐸𝑋𝑆𝑡

 through 𝑆𝑡’s parent 𝑃𝑎𝑡  to 𝑆𝑡. For 

example, 𝐸𝑋L5 = L3 and 𝑇L5 = {L3, L4, L5} in Graph G5 (Figure 1). Q.E.D. 

Note that if 𝑆𝑡 has no endogenous latent non-collider ancestors, then 𝑃𝑎𝑡 = 𝐸𝑋𝑆𝑡
 and 𝑇𝑆𝑡

 equals the 

ordered sequence {𝐸𝑋𝑆𝑡
, 𝑆𝑡}, e.g., 𝐸𝑋L4 = L3 and 𝑇L4 = {L3, L4} in Graph G5 (Figure 1). 

2) Under Assumption 5, any parent 𝑃𝑎𝑗  of latent collider 𝐶𝑗 could be either a latent non-collider or an 

exogenous latent; in other words, 𝐏𝐚𝑗 ⊂ (𝐍𝐂 ∪ 𝐄𝐗). If 𝑃𝑎𝑗  is a latent non-collider, then it is on the 

directed path 𝑇𝐶𝑗
 from 𝐸𝑋𝐶𝑗

 to 𝐶𝑗; and if 𝑃𝑎𝑗  is an exogenous latent 𝐸𝑋𝐶𝑗
, then it is the source of a 

directed path 𝑇𝐶𝑗
(or more than a single directed path) to 𝐶𝑗. 𝐄𝐗𝐶𝑗

= ⋃ 𝐸𝑋𝐶𝑗
 is the set of exogenous 

ancestors of 𝐶𝑗, and 𝐓𝐶𝑗
= ⋃ 𝑇𝐶𝑗

 is the set of directed paths from 𝐄𝐗𝐶𝑗
 to 𝐶𝑗. For example, 𝐄𝐗L4 =

{L1, L5} and 𝐓L4 = {{L1, L2, L3, L4}, {L5, L4}} in G6 (Figure 1). Q.E.D. 
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Proposition 1 The joint probability over V due to value assignment ex to exogenous set EX is deter-

mined only by this assignment and the BN conditional probabilities. 

Proof: Since the underlying model is a BN, the joint probability over V, which is represented by the BN, is 

factored according to the local Markov assumption for G. That is, any variable in V is independent of its non-

descendants in G conditioned on its parents in G: 

𝑃(𝐕) = ∏ 𝑃(𝑉𝑖|𝐏𝐚𝑖𝑉𝑖∈𝑽 ),  

(1) 

where 𝐏𝐚𝑖 are the parents of 𝑉𝑖. It can be factorized under our assumptions as: 

𝑃(𝐕) = P(𝐄𝐗, 𝐂, 𝐒, 𝐎𝐄𝐗, 𝐎𝐂, 𝐎𝐒) = 

∏ 𝑃(𝐸𝑋𝑖)

𝐸𝑋𝑖∈𝐄𝐗

∏ 𝑃(𝐶𝑗|𝐏𝐚𝑗) ∏ 𝑃(𝑆𝑡|𝑃𝑎𝑡)

𝑆𝑡∈𝐒𝐶𝑗∈𝑪

 

∏ 𝑃(𝑂𝐸𝑋𝑚|𝐸𝑋𝑚

𝑂𝐸𝑋𝑚∈𝑶𝑬𝑿

) ∏ 𝑃(𝑂𝐶𝑘|𝐶𝑘

𝑂𝐶𝑘∈𝐎𝐂

) ∏ 𝑃(𝑂𝑆𝑣|𝑆𝑣

𝑂𝑆𝑣∈𝐎𝐒

), 

(2) 

where 𝐏𝐚𝑗 are the latent parents of the latent collider 𝐶𝑗 , 𝑃𝑎𝑡 is the latent parent of the latent non-

collider 𝑆𝑡 (in other words, 𝐏𝐚𝑗 , 𝑃𝑎𝑡 ⊂ 𝐍𝐂), 𝐶𝑘 ∈ 𝐂 and 𝑆𝑣 ∈ 𝐒 are the latent collider and latent non-collider 

parents of observed variables 𝑂𝐶𝑘 and 𝑂𝑆𝑣 , respectively, and 𝐸𝑋𝑚 ∈ 𝐄𝐗 is the exogenous latent parent of 

observed variable 𝑂𝐸𝑋𝑚. 

The first product in (2) for assignment ex is of ex’s priors. In the other five products, the probabilities 

are of endogenous latents or observed variables conditioned on their parents, which, based on Lemma 

1, are either on the directed paths from EX to the latents/observed variables or exogenous themselves. 

Either way, any assignment of endogenous latents or observed variables is a result of the assignment 

ex to EX that is mediated to the endogenous latents/observed variables by the BN probabilities: 

P(𝐕|𝐄𝐗 = 𝐞𝐱) = P(𝐄𝐗, 𝐂, 𝐒, 𝐎𝐄𝐗, 𝐎𝐂, 𝐎𝐒|𝐄𝐗 = 𝐞𝐱) = 

∏ 𝑃(𝐸𝑋𝑖 = 𝑒𝑥𝑖)

𝐸𝑋𝑖∈𝐄𝐗

∏ 𝑃 (𝐶𝑗 = 𝑐𝑗|𝐏𝐚𝑗 = 𝐩𝐚
𝒋

𝐞𝐱𝐶𝑗
) ∏ 𝑃 (𝑆𝑡 = 𝑛𝑐𝑡|𝑃𝑎𝑡 = 𝑝𝑎𝑡

𝑒𝑥𝑆𝑡 )

𝑆𝑡∈𝐒𝐶𝑗∈𝐂

 

∏ 𝑃(𝑂𝐸𝑋𝑚|𝐸𝑋𝑚

𝑂𝐸𝑋𝑚∈𝐎𝐄𝐗

= 𝑒𝑥𝑚) ∏ 𝑃(𝑂𝐶𝑘 = 𝑜𝑐𝑘|𝐶𝑘 =

𝑂𝐶𝑘∈𝐎𝐂

𝑐𝑘

𝐞𝐱𝑪𝑘 ) 

∏ 𝑃(𝑂𝑆𝑣 = 𝑜𝑠𝑣|𝑆𝑣 =

𝑂𝑆𝑣∈𝐎𝐒

𝑠𝑣

𝑒𝑥𝑆𝑣 ). 

(3) 

where 

 𝑒𝑥𝑖  and 𝑒𝑥𝑚 are the values of 𝐸𝑋𝑖 and 𝐸𝑋𝑚 (the latter is the parent of the mth observed child of 

the exogenous latents), respectively, in the assignment ex to EX; 

 𝐩𝐚
𝒋

𝐞𝐱𝐶𝑗
 is the configuration of 𝐶𝑗’s parents due to configuration 𝐞𝐱𝐶𝑗

 of 𝐶𝑗’s  exogenous ances-

tors in ex; 

 𝑝𝑎𝑡

𝑒𝑥𝑆𝑡  is the value of 𝑆𝑡’s parent due to the value 𝑒𝑥𝑆𝑡
 of 𝑆𝑡’s exogenous ancestor in ex; 

 𝑐𝑘

𝐞𝐱𝐶𝑘  is the value of 𝑂𝐶𝑘’s collider parent due to the configuration 𝐞𝐱𝐶𝑘
 of 𝐶𝑘’s exogenous an-

cestors in ex; and  

 𝑠𝑣

𝑒𝑥𝑆𝑣  is the value of 𝑂𝑆𝑣’s non-collider parent due to the value 𝑒𝑥𝑆𝑣
 of 𝑆𝑣’s exogenous ancestor 

in ex. Q.E.D. 
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Proposition 2 The major local value 𝑀𝐴𝑉𝐸𝑁𝑖
(𝐩𝐚′𝑖) of an endogenous variable 𝐸𝑁𝑖 given a certain 

configuration of its parents 𝐩𝐚𝑖
′ is also certain. 

Proof: 

Assumption 6 guarantees that given a certain configuration 𝐩𝐚𝑖
′ of 𝐏𝐚𝑖, there exists a certain value 𝑒𝑛𝑖

′ of 

𝐸𝑁𝑖, such that 𝑃(𝐸𝑁𝑖 = 𝑒𝑛𝑖
′|𝐏𝐚𝑖 = 𝐩𝐚𝑖

′) > 𝑃(𝐸𝑁𝑖 = 𝑒𝑛𝑖
′′|𝐏𝐚𝑖 = 𝐩𝐚𝑖

′) for every other value 𝑒𝑛𝑖
′′of 𝐸𝑁𝑖. 

From the definition of a major local value, 𝑀𝐴𝑉𝐸𝑁𝑖
(𝐩𝐚𝑖

′) = 𝑒𝑛𝑖
′. Q.E.D. 

Based on the proof of Proposition 1, we can quantify the effect of ex on EN. For example, a major 

effect of ex on EN can be factorized according to the product of major local effects  on EN (weighted 

by the product of priors, 𝑃(𝐸𝑋𝑖 = 𝑒𝑥𝑖)): 

𝑀𝐴𝐸(𝐞𝐱) = ∏ 𝑃(𝐸𝑋𝑖 = 𝑒𝑥𝑖)

𝐸𝑋𝑖∈𝐄𝐗

∏ 𝑀𝐴𝐸𝐶𝑗
(𝐩𝐚

𝑗

𝐞𝐱𝐶𝑗
)

𝐶𝑗∈𝑪

∏ 𝑀𝐴𝐸𝑆𝑡
(𝑝𝑎𝑡

𝑒𝑥𝑆𝑡 )

𝑆𝑡∈𝐒

 

∏ 𝑀𝐴𝐸𝑂𝐸𝑋𝑚
(𝑒𝑥𝑚)

𝑂𝐸𝑋𝑚∈𝐎𝐄𝐗

∏ 𝑀𝐴𝐸𝑂𝐶𝑘
(𝑐

𝑘

𝐞𝐱𝐶𝑘 )

𝑂𝐶𝑘∈𝐎𝐂

∏ 𝑀𝐴𝐸𝑂𝑆𝑣
(𝑠𝒗

𝑒𝑥𝑆𝑣 )

𝑂𝑆𝑣∈𝐎𝐒

 

= ∏ 𝑃(𝐸𝑋𝑖 = 𝑒𝑥𝑖)

𝐸𝑋𝑖∈𝐄𝐗

∏ 𝑚𝑎𝑥𝑐𝑗
′𝑃 (𝐶𝑗 = 𝑐𝑗

′|𝐏𝐚𝑗 = 𝐩𝐚
𝑗

𝐞𝐱𝐶𝑗
)

𝐶𝑗∈𝐂

 

∏ 𝑚𝑎𝑥𝑠𝑡
′𝑃 (𝑆𝑡 = 𝑠𝑡

′|𝑃𝑎𝑡 = 𝑝𝑎𝑡

𝑒𝑥𝑆𝑡 )

𝑆𝑡∈𝐒

∏ 𝑚𝑎𝑥𝑜𝑒𝑥𝑚
′ 𝑃(𝑂𝐸𝑋𝑚 = 𝑜𝑒𝑥𝑚

′ |𝐸𝑋𝑚 = 𝑒𝑥𝑚)

𝑂𝐸𝑋𝑚∈𝐎𝐄𝐗

 

∏ 𝑚𝑎𝑥𝑜𝑐𝑘
′ 𝑃(𝑂𝐶𝑘 = 𝑜𝑐𝑘

′ |𝐶𝑘 =𝑂𝐶𝑘∈𝐎𝐂 𝑐𝑘

𝐞𝐱𝐶𝑘 ) ∏ 𝑚𝑎𝑥𝑜𝑠𝑣
′ 𝑃(𝑂𝑆𝑣 = 𝑜𝑠𝑣

′ |𝑆𝑣 = 𝑠𝑣

𝑒𝑥𝑆𝑣 )𝑂𝑆𝑣∈𝐎𝐒 . 

(4) 

Definition 10 A partial effect on a subset of endogenous variables 𝐄𝐍′ ⊆ 𝐄𝐍 is the influence of a 

configuration 𝐞𝐱′ of 𝐄𝐍′’s exogenous ancestors 𝐄𝐗′ ⊆ 𝐄𝐗 on 𝐄𝐍′. We define a partial major effect 

𝑀𝐴𝐸𝐄𝐍′(𝐞𝐱′) as the largest partial effect of 𝐞𝐱′on 𝐄𝐍′ and a partial minor effect 𝑀𝐼𝐸𝐄𝐍′(𝐞𝐱′) as any 

non-𝑀𝐴𝐸𝐄𝐍′(𝐞𝐱′) partial effect of 𝐞𝐱′ on 𝐄𝐍′. A partial major value configuration 𝑀𝐴𝑉𝐄𝐍′(𝐞𝐱′) is the 

𝐞𝐧′ of 𝐄𝐍′ corresponding to 𝑀𝐴𝐸𝐄𝐍′(𝐞𝐱′); in other words, the most probable 𝐞𝐧′ due to 𝐞𝐱′, and a 

partial minor value configuration is an 𝐞𝐧′ corresponding to any 𝑀𝐼𝐸𝐄𝐍′(𝐞𝐱′). 

We are interested in representing the influence of exogenous variables on their observed descendants 

and all the variables in the directed paths connecting them. To do this, we separately analyze the (par-

tial) effect of each exogenous variable on each observed variable for which the exogenous is its ances-

tor and all the latent variables along the path connecting these two. We distinguish between two cases 

(both are represented in Lemma 1): (1) Observed descendants in OEX and OS that are, respectively, 

children of exogenous latents and children of latent non-colliders that are linked to their exogenous 

ancestors, each via a single directed path; and (2) Observed descendants in OC that are children of 

latent colliders and linked to their exogenous ancestors via a set of directed paths through their latent 

collider parents. Thus, we are interested in: 

1. The partial effect of a value of exogenous ancestor 𝐸𝑋𝑁𝐶𝑣
 to non-collider 𝑁𝐶𝑣 on any configura-

tion of the set of variables {𝑇𝑆𝑁𝐶𝑣
\𝐸𝑋𝑁𝐶𝑣

, 𝑂𝑁𝐶𝑣}, where 𝑂𝑁𝐶𝑣 is an observed child of latent non-

collider 𝑁𝐶𝑣, and 𝑇𝑆𝑁𝐶𝑣
 is the set of variables in the directed path 𝑇𝑁𝐶𝑣

 from 𝐸𝑋𝑁𝐶𝑣
 to 𝑁𝐶𝑣. The 

corresponding 𝑀𝐴𝐸{𝑇𝑆𝑁𝐶𝑣\𝐸𝑋𝑁𝐶𝑣 ,𝑂𝑁𝐶𝑣}(𝑒𝑥𝑁𝐶𝑣
) and 𝑀𝐴𝑉{𝑇𝑆𝑁𝐶𝑣\𝐸𝑋𝑁𝐶𝑣 ,𝑂𝑁𝐶𝑣}(𝑒𝑥𝑁𝐶𝑣

) are partial major 

effect and partial major value configuration, respectively. For example, we may be interested in 

the partial effect of a value of 𝐸𝑋𝑁𝐶𝑣
= 𝐸𝑋L5 = L3 in G5 (Figure 1) on {𝑇𝑆𝑁𝐶𝑣

\𝐸𝑋𝑁𝐶𝑣
, 𝑂𝑁𝐶𝑣} =

{𝑇𝑆L5\L3, X13} = {L4, L5, X13}. Note that we use here the notation 𝑁𝐶𝑣 since we are interested in 

both exogenous and endogenous latent non-colliders. When we are interested in the partial effect on 

an observed variable in OEX, its exogenous ancestor (which is also its direct parent) is also the 

latent non-collider, 𝑁𝐶𝑣, and the effect is not measured on any other variable but this observed 

variable. This is Case 1, which is analyzed below; 
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2. The partial effect of a configuration of exogenous variables 𝐄𝐗𝐶𝑘
 to collider 𝐶𝑘 on any configu-

ration of the set of variables {𝐓𝐒𝐶𝑘
\𝐄𝐗𝐶𝑘

, 𝑂𝐶𝑘,}, where 𝑂𝐶𝑘 is an observed child of latent collider 

𝐶𝑘
1, and 𝐓𝐒𝐶𝑘

 is the set of variables in the set of directed paths 𝐓𝐶𝑘
 from 𝐄𝐗𝐶𝑘

 to 𝐶𝑘. The corre-

sponding 𝑀𝐴𝐸
{𝐓𝐒𝐶𝑘

\𝐄𝐗𝐶𝑘
,𝑂𝐶𝑘}

(𝐞𝐱𝐶𝑘
) and 𝑀𝐴𝑉

{𝐓𝐒𝐶𝑘
\𝐄𝐗𝐶𝑘

,𝑂𝐶𝑘}
(𝐞𝐱𝐶𝑘

) are partial major effect and 

partial major value configuration, respectively. For example, we may be interested in the partial 

effect of a configuration of 𝐄𝐗𝐶𝑘
= 𝐄𝐗L4 = {L1, L5} in G6 (Figure 1) on {𝐓𝐒𝐶𝑘

\𝐄𝐗𝐶𝑘
, 𝑂𝐶𝑘,} =

{{{L1, L2, L3, L4}\{L1}, {L5}\{L5}}, X11} = {L2, L3, L4, X11}. This is Case 2, which is analyzed 

below. 

Following, we provide detailed descriptions for these partial effects and partial values for observed 

children of latent non-colliders (Case 1) and observed children of latent colliders (Case 2) and formal-

ize their properties in Propositions 3–7 to set the stage for Lemma 2. 

Case 1: Observed children of latent non-colliders 

If the latent non-collider 𝑁𝐶𝑣 is exogenous, 𝑁𝐶𝑣 = 𝐸𝑋𝑣 and 𝑂𝑁𝐶𝑣 = 𝑂𝐸𝑋𝑣 , then, {𝑇𝑆𝑁𝐶𝑣
\𝐸𝑋𝑁𝐶𝑣

, 𝑂𝑁𝐶𝑣} =

𝑂𝐸𝑋𝑣. Thus, the partial effect is simply the local effect, and the partial major effect is the major local effect 

𝑀𝐴𝐸𝑂𝐸𝑋𝑣
(𝑒𝑥𝑣). If the latent non-collider 𝑁𝐶𝑣 is endogenous, then 𝑁𝐶𝑣 = 𝑆𝑣 and 𝑂𝑁𝐶𝑣 = 𝑂𝑆𝑣. Then, all 

variables in {𝑇𝑆𝑆𝑣
\𝐸𝑋𝑆𝑣

, 𝑂𝑆𝑣} are d-separated by 𝐸𝑋𝑆𝑣
 from 𝐄𝐗\𝐸𝑋𝑆𝑣

. For example, {L4, L5, X13} in G5 

(Figure 1) are d-separated by L3 from L2 and its children. Thus, the effect of ex on the joint probability 

distribution (3) can be factored to the: a) joint probability over 𝐄𝐗 = 𝐞𝐱; b) conditional probabilities of the 

influenced variables along a specific directed path that ends at 𝑂𝑆𝑣  on 𝐸𝑋𝑆𝑣
= 𝑒𝑥𝑆𝑣

 (note that the value 𝑒𝑥𝑆𝑡
 

for all 𝑆𝑡 ∈ 𝑇𝑆𝑆𝑣
 is the same because 𝐸𝑋𝑆𝑡

= 𝐸𝑋𝑣 is the same exogenous ancestor of all latent non-colliders 

on the path to 𝑆𝑣); and c) conditional probabilities of all the remaining variables in the graph on 𝐄𝐗 = 𝐞𝐱: 

P(𝐕|𝐄𝐗 = 𝐞𝐱) = P(𝐄𝐗 = 𝐞𝐱)P(𝑇𝑆𝑆𝑣
\𝐸𝑋𝑆𝑣

, 𝑂𝑆𝑣|𝐸𝑋𝑆𝑣
= 𝑒𝑥𝑆𝑣

) 

P(𝐕 ∖ {𝑇𝑆𝑆𝑣
\𝐸𝑋𝑆𝑣

, 𝑂𝑆𝑣}|𝐄𝐗 = 𝐞𝐱), 

         (5) 

in which the second factor corresponds to the partial effect of 𝐸𝑋𝑆𝑣
= 𝑒𝑥𝑆𝑣

 on 𝑇𝑆𝑆𝑣
\𝐸𝑋𝑆𝑣

 (the latent non-

colliders on the path from 𝐸𝑋𝑆𝑣
 to 𝑆𝑣) and 𝑆𝑣’s observed child, 𝑂𝑆𝑣 , and the third factor corresponds to the 

influence of 𝐄𝐗 = 𝐞𝐱 on all the other (latent and observed) variables in the graph. We can write the second 

factor describing the partial effect of the value 𝑒𝑥𝑆𝑣
 on the values of the variables 𝑇𝑆𝑆𝑣

\𝐸𝑋𝑆𝑣
 in the directed 

path from 𝐸𝑋𝑆𝑣
 to 𝑂𝑆𝑣  (including) as: 

P(𝑇𝑆𝑆𝑣
\𝐸𝑋𝑆𝑣

, 𝑂𝑆𝑣|𝐸𝑋𝑆𝑣
= 𝑒𝑥𝑆𝑣

) = 

∏ 𝑃(𝑆𝑡 = 𝑠𝑡|𝑃𝑎𝑡 = 𝑝𝑎𝑡

𝑒𝑥𝑆𝑣)𝑃(𝑂𝑆𝑣 = 𝑜𝑠𝑣|𝑆𝑣 = 𝑠𝑣

𝑒𝑥𝑆𝑣
𝑆𝑡∈𝑇𝑆𝑆𝑣\𝐸𝑋𝑆𝑣

). 

(6) 

The partial major effect in (4) for this directed path can be written as (note again that 𝑒𝑥𝑆𝑡
= 𝑒𝑥𝑆𝑣

): 

𝑀𝐴𝐸{𝑇𝑆𝑆𝑣\𝐸𝑋𝑆𝑣 ,𝑂𝑆𝑣}(𝑒𝑥𝑆𝑣
)= 𝑀𝐴𝐸{𝑇𝑆𝑆𝑣\𝐸𝑋𝑆𝑣}(𝑒𝑥𝑆𝑣

) ∙ 𝑀𝐴𝐸𝑂𝑆𝑣
(𝑠𝒗

𝑒𝑥𝑆𝑣 ) = ∏ 𝑀𝐴𝐸𝑆𝑡
(𝑝𝑎𝑡

𝑒𝑥𝑆𝑣 )𝑆𝑡∈𝑇𝑆𝑆𝑣\𝐸𝑋𝑆𝑣
∙

𝑀𝐴𝐸𝑂𝑆𝑣
(𝑠𝒗

𝑒𝑥𝑆𝑣 ) 

(7) 

Proposition 3 The 𝑀𝐴𝑉{𝑇𝑆𝑁𝐶𝑣\𝐸𝑋𝑁𝐶𝑣 ,𝑂𝑁𝐶𝑣}(𝑒𝑥𝑁𝐶𝑣
) corresponding to 𝑀𝐴𝐸{𝑇𝑆𝑁𝐶𝑣\𝐸𝑋𝑁𝐶𝑣 ,𝑂𝑁𝐶𝑣}(𝑒𝑥𝑁𝐶𝑣

) is a cer-

tain value configuration for each certain value 𝑒𝑥𝑁𝐶𝑣
. 

 

                                                           
1Throughout the paper, we use a child index for its parent. For example, 𝑂𝐶𝑘′𝑠 parent is 𝐶𝑘, although generally, we use 

the index 𝑗 for a collider, such as 𝐶𝑗 . 
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Proof: 

If the latent non-collider 𝑁𝐶𝑣 is exogenous, 𝑁𝐶𝑣 = 𝐸𝑋𝑣 and 𝑂𝑁𝐶𝑣 = 𝑂𝐸𝑋𝑣 , then {𝑇𝑆𝑁𝐶𝑣
\𝐸𝑋𝑁𝐶𝑣

, 𝑂𝐸𝑋𝑣} =

𝑂𝐸𝑋𝑣 and the partial major value is the local major value 𝑀𝐴𝑉𝑂𝐸𝑋𝑣
(𝑒𝑥𝑣), which by Proposition 2 is certain 

for a certain value 𝑒𝑥𝑣 . 

If the latent non-collider 𝑁𝐶𝑣 is endogenous, 𝑁𝐶𝑣 = 𝑆𝑣  and 𝑂𝑁𝐶𝑣 = 𝑂𝑆𝑣 , then we consider 

{𝑇𝑆𝑆𝑣
\𝐸𝑋𝑆𝑣

, 𝑂𝑆𝑣}, which is a set of ordered variables along the directed path 𝑇𝑆𝑣
 that ends in 𝑂𝑆𝑣 . The re-

mainder of the proof is by induction: 

Basis: Based on Proposition 2, 𝑀𝐴𝑉𝑆1
(𝑒𝑥𝑆𝑣

), where 𝑆1 is the first variable in {𝑇𝑆𝑆𝑣
\𝐸𝑋𝑆𝑣

, 𝑂𝑆𝑣} and a direct 

child of 𝐸𝑋𝑆𝑣
, given a certain value 𝑒𝑥𝑆𝑣

, is also certain. 

Step: If the major value of the ith variable, 𝑆𝑖, in the subset {𝑇𝑆𝑆𝑣
\𝐸𝑋𝑆𝑣

, 𝑂𝑆𝑣}, i.e., 𝑀𝐴𝑉𝑆𝑖
(𝑝𝑎

𝑖

𝑒𝑥𝑆𝑣 ), is 

certain for a certain value 𝑝𝑎
𝑖

𝑒𝑥𝑆𝑣 , then the major value of the (i+1)th variable, 𝑆𝑖+1, in the subset (which is 

𝑆𝑖’s child), i.e., 𝑀𝐴𝑉𝑆𝑖+1
(𝑝𝑎

𝑖+1

𝑒𝑥𝑆𝑣 ), is by Proposition 2 certain too for a certain value 𝑝𝑎
𝑖+1

𝑒𝑥𝑆𝑣  (which is 

𝑀𝐴𝑉𝑆𝑖
(𝑝𝑎

𝑖

𝑒𝑥𝑆𝑣 )). Q.E.D. 

Note that here we use the notation 𝑁𝐶𝑣 rather than 𝑆𝑣 since the proposition applies to both exogenous and 

endogenous latent non-colliders. 

Proposition 4 All corresponding values in 𝑀𝐴𝑉{𝑇𝑆𝑁𝐶𝑣\𝐸𝑋𝑁𝐶𝑣 ,𝑂𝑁𝐶𝑣}(𝑒𝑥′𝑁𝐶𝑣
) and 

𝑀𝐴𝑉{𝑇𝑆𝑁𝐶𝑣\𝐸𝑋𝑁𝐶𝑣 ,𝑂𝑁𝐶𝑣}(𝑒𝑥′′𝑁𝐶𝑣
), for two values 𝑒𝑥′𝑁𝐶𝑣

 and 𝑒𝑥′′𝑁𝐶𝑣
 of 𝐸𝑋𝑁𝐶𝑣

, are different. 

Proof: 

If the latent non-collider 𝑁𝐶𝑣 is exogenous, 𝑁𝐶𝑣 = 𝐸𝑋𝑣 and 𝑂𝑁𝐶𝑣 = 𝑂𝐸𝑋𝑣 , then {𝑇𝑆𝑁𝐶𝑣
\𝐸𝑋𝑁𝐶𝑣

, 𝑂𝐸𝑋𝑣} =

𝑂𝐸𝑋𝑣, and, by Assumption 7, the corresponding 𝑀𝐴𝑉𝑂𝐸𝑋𝑣
(𝑒𝑥′𝑣) and 𝑀𝐴𝑉𝑂𝐸𝑋𝑣

(𝑒𝑥′′𝑣) are different for two 

values 𝑒𝑥′𝑣  and 𝑒𝑥′′𝑣 . 

If the latent non-collider 𝑁𝐶𝑣 is endogenous, 𝑁𝐶𝑣 = 𝑆𝑣  and 𝑂𝑁𝐶𝑣 = 𝑂𝑆𝑣 , then we consider 

{𝑇𝑆𝑆𝑣
\𝐸𝑋𝑆𝑣

, 𝑂𝑆𝑣}, which is a set of ordered variables along the directed path 𝑇𝑆𝑣
 that ends in 𝑂𝑆𝑣 . The re-

mainder of the proof is by induction: 

Basis: The major local values 𝑀𝐴𝑉𝑆1
(𝑒𝑥′𝑆𝑣

) and 𝑀𝐴𝑉𝑆1
(𝑒𝑥′′𝑆𝑣

) of the first variable, 𝑆1, in 

{𝑇𝑆𝑆𝑣
\𝐸𝑋𝑆𝑣

, 𝑂𝑆𝑣} (which is also a direct child of 𝐸𝑋𝑆𝑣
) and two values 𝑒𝑥′𝑆𝑣

 and 𝑒𝑥′′𝑆𝑣
 of 𝐸𝑋𝑆𝑣

 are different 

based on Assumption 7. 

Step: If the major local values of the ith variable, 𝑆𝑖, in {𝑇𝑆𝑆𝑣
\𝐸𝑋𝑆𝑣

, 𝑂𝑆𝑣} and two values 𝑒𝑥′𝑣  and 𝑒𝑥′′𝑣  

of 𝐸𝑋𝑆𝑣
, i.e., 𝑀𝐴𝑉𝑆𝑖

(𝑒𝑥′
𝑆𝑣

) and 𝑀𝐴𝑉𝑆𝑖
(𝑒𝑥′′

𝑆𝑣
), are different, then the major local values of 𝑆𝑖+1 (𝑆𝑖’s child) 

and the two values 𝑀𝐴𝑉𝑆𝑖
(𝑒𝑥′

𝑆𝑣
) and 𝑀𝐴𝑉𝑆𝑖

(𝑒𝑥′′
𝑆𝑣

), i.e., 𝑀𝐴𝑉𝑆𝑖+1
(𝑝𝑎

𝑖+1

𝑒𝑥′
𝑆𝑣) = 𝑀𝐴𝑉𝑆𝑖+1

(𝑀𝐴𝑉𝑆𝑖
(𝑒𝑥′

𝑆𝑣
)) 

and 𝑀𝐴𝑉𝑆𝑖+1
(𝑝𝑎

𝑖+1

𝑒𝑥′′
𝑆𝑣 ) = 𝑀𝐴𝑉𝑆𝑖+1

(𝑀𝐴𝑉𝑆𝑖
(𝑒𝑥′′

𝑆𝑣
)) are different too based on Assumption 7. Q.E.D. 

Here also we use the notation 𝑁𝐶𝑣, since the proposition applies to both exogenous and endogenous latent 

non-colliders. 

So far, we have analyzed the impact of an exogenous variable on a latent non-collider by “propagating” the 

exogenous (source) impact along the path to the latent non-collider (sink). Propositions 3 and 4 guaranteed, 

respectively, that a certain value of the exogenous variable is responsible for a certain value of the latent non-

collider and different values of the exogenous are echoed through different values of the latent non-collider. 

Proposition 4 is based on the correspondence between changes in values of a latent non-collider and changes 

in values of its parent; a correspondence that is guaranteed by Assumption 7 (first part). Propositions 3 and 

4 ensure, respectively, the existence and uniqueness of the value a latent non-collider gets under the influence 

of an exogenous ancestor; one (Proposition 3) and only one (Proposition 4) value of the latent non-collider 

changes with a change in the value of the exogenous. We formalize this in the following Proposition 5. 
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Proposition 5 𝐸𝑋𝑁𝐶𝑣
 changes values (i.e., has two values 𝑒𝑥′𝑁𝐶𝑣

 and 𝑒𝑥′′𝑁𝐶𝑣
) if and only if 𝑁𝐶𝑣 changes 

values in the two corresponding major value configurations: 𝑀𝐴𝑉{𝑇𝑆𝑁𝐶𝑣\𝐸𝑋𝑁𝐶𝑣 ,𝑂𝑁𝐶𝑣}(𝑒𝑥′𝑁𝐶𝑣
) and 

𝑀𝐴𝑉{𝑇𝑆𝑁𝐶𝑣\𝐸𝑋𝑁𝐶𝑣 ,𝑂𝑁𝐶𝑣}(𝑒𝑥′′𝑁𝐶𝑣
). 

Proof: 

(“if”) Proposition 3 guarantees that 𝑁𝐶𝑣 has a certain value in 𝑀𝐴𝑉{𝑇𝑆𝑁𝐶𝑣\𝐸𝑋𝑁𝐶𝑣 ,𝑂𝑁𝐶𝑣}(𝑒𝑥𝑁𝐶𝑣
) for a certain 

value 𝑒𝑥𝑁𝐶𝑣
 of 𝐸𝑋𝑁𝐶𝑣

. Thus, if 𝑁𝐶𝑣 has different values in two 𝑀𝐴𝑉{𝑇𝑆𝑁𝐶𝑣\𝐸𝑋𝑁𝐶𝑣 ,𝑂𝑁𝐶𝑣}(𝑒𝑥𝑁𝐶𝑣
), then 𝐸𝑋𝑁𝐶𝑣

 

should also have two corresponding values, say 𝑒𝑥′𝑁𝐶𝑣
 and 𝑒𝑥′′𝑁𝐶𝑣

. 

(“only if”) Proposition 4 guarantees that 𝑁𝐶𝑣 will have different values in 𝑀𝐴𝑉{𝑇𝑆𝑁𝐶𝑣\𝐸𝑋𝑁𝐶𝑣 ,𝑂𝑁𝐶𝑣}(𝑒𝑥′𝑁𝐶𝑣
) 

and 𝑀𝐴𝑉{𝑇𝑆𝑁𝐶𝑣\𝐸𝑋𝑁𝐶𝑣 ,𝑂𝑁𝐶𝑣}(𝑒𝑥′′𝑁𝐶𝑣
) for two values 𝑒𝑥′𝑁𝐶𝑣

 and 𝑒𝑥′′𝑁𝐶𝑣
 of 𝐸𝑋𝑁𝐶𝑣

. Thus, if 𝑁𝐶𝑣 has only a 

certain value in two 𝑀𝐴𝑉{𝑇𝑆𝑁𝐶𝑣\𝐸𝑋𝑁𝐶𝑣 ,𝑂𝑁𝐶𝑣}(𝑒𝑥𝑁𝐶𝑣
), then 𝐸𝑋𝑁𝐶𝑣

 should have also a certain value in the 

corresponding two 𝑒𝑥𝑁𝐶𝑣
. Q.E.D. 

Case 2: Observed children of latent colliders 

In the case of an observed variable 𝑂𝐶𝑘 that is a child of a latent collider 𝐶𝑘, all variables in {𝐓𝐒𝐶𝑘
\𝐄𝐗𝐶𝑘

, 𝑂𝐶𝑘} 

are d-separated by 𝐄𝐗𝐶𝑘
 from 𝐄𝐗\𝐄𝐗𝐶𝑘

. Thus, the effect of ex on the joint probability distribution (3) can be 

factored (similarly to Case 1) to the: a) joint probability over 𝐄𝐗 = 𝐞𝐱; b) conditional probabilities of the 

influenced variables along all directed paths that end at 𝑂𝐶𝑘 on 𝐄𝐗𝐶𝑘
= 𝐞𝐱𝐶𝑘

(note that all variables along 

each directed path 𝑇𝐶𝑘
 are influenced by the same 𝑒𝑥𝐶𝑘

); and c) conditional probabilities of all the remaining 

variables in the graph on 𝐄𝐗 = 𝐞𝐱: 

P(𝐕|𝐄𝐗 = 𝐞𝐱) = P(𝐄𝐗 = 𝐞𝐱)P(𝐓𝐒𝐶𝑘
\𝐄𝐗𝐶𝑘

, 𝑂𝐶𝑘|𝐄𝐗𝐶𝑘
= 𝐞𝐱𝐶𝑘

) 

P(𝐕 ∖ {𝐓𝐒𝐶𝑘
\𝐄𝐗𝐶𝑘

, 𝑂𝐶𝑘}|𝐄𝐗 = 𝐞𝐱), 

(8) 

in which the second factor corresponds to the partial effect on {𝐓𝐒𝐶𝑘
\𝐄𝐗𝐶𝑘

, 𝑂𝐶𝑘} of 𝐄𝐗𝐶𝑘
, and the third factor 

corresponds to the partial effect on all variables other than {𝐓𝐒𝐶𝑘
\𝐄𝐗𝐶𝑘

, 𝑂𝐶𝑘}. We can decompose the second 

factor into a product of: a) a product over all directed paths into 𝐶𝑘 of a product of partial effects over all 

variables (excluding 𝐶𝑘) in such a path; b) the partial effect on 𝐶𝑘; and c) that on its child 𝑂𝐶𝑘: 

P(𝐓𝐒𝐶𝑘
\𝐄𝐗𝐶𝑘

, 𝑂𝐶𝑘|𝐄𝐗𝐶𝑘
= 𝐞𝐱𝐶𝑘

) = ∏ {𝑇𝑆𝐶𝑘
∈𝐓𝐒𝐶𝑘

∏ 𝑃 (𝑆𝑡 = 𝑠𝑡|𝑃𝑎𝑡 = 𝑝𝑎𝑡

𝑒𝑥𝐶𝑘 )}𝑆𝑡∈𝑇𝑆𝐶𝑘
\{𝐸𝑋𝐶𝑘

,𝐶𝑘}  

𝑃(𝐶𝑘 = 𝑐𝑘|𝐏𝐚𝑘 = 𝐩𝐚𝑘

𝐞𝐱𝐶𝑘 )𝑃(𝑂𝐶𝑘 = 𝑜𝑐𝑘|𝐶𝑘 = 𝑐𝑘

𝐞𝐱𝐶𝑘 ). 

(9) 

This factor can be rewritten as: 

P(𝐓𝐒𝐶𝑘
\𝐄𝐗𝐶𝑘

, 𝑂𝐶𝑘|𝐄𝐗𝐶𝑘
= 𝐞𝐱𝐶𝑘

)=  

∏ {
𝑇𝑆𝐶𝑘

∈𝐓𝐒𝐶𝑘

 P(𝑇𝑆𝐶𝑘
\{𝐸𝑋𝐶𝑘

, 𝐶𝑘}|𝐸𝑋𝐶𝑘
= 𝑒𝑥𝐶𝑘

)} 

𝑃(𝐶𝑘 = 𝑐𝑘|𝐏𝐚𝑘 = 𝐩𝐚𝑘

𝐞𝐱𝐶𝑘 )𝑃(𝑂𝐶𝑘 = 𝑜𝑐𝑘|Ck = c
k

𝐞𝐱𝐶𝑘 ). 

(10) 

It reflects the partial effects of a configuration 𝐞𝐱𝐶𝑘
 on the values of the variables in {𝐓𝐒𝐶𝑘

\𝐄𝐗𝐶𝑘
} and the 

values 𝐶𝑘 and 𝑂𝐶𝑘 get, and thus the partial major effect of the second factor can be represented as: 

𝑀𝐴𝐸
{𝐓𝐒𝐶𝑘

\𝐄𝐗𝐶𝑘
,𝑂𝐶𝑘}

(𝐞𝐱𝐶𝑘
) = ∏ {

𝑇𝑆𝐶𝑘
∈𝐓𝐒𝐶𝑘

𝑀𝐴𝐸𝑇𝑆𝐶𝑘
\{𝐸𝑋𝐶𝑘

,𝐶𝑘}(𝑒𝑥𝐶𝑘
)} ∙ 𝑀𝐴𝐸𝐶𝑘

(𝐩𝐚𝑘

𝐞𝐱𝐶𝑘 ) ∙ 𝑀𝐴𝐸𝑂𝐶𝑘
(𝑐𝑘

𝐞𝐱𝐶𝑘 ). 

(11) 
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Proposition 6 The 𝑀𝐴𝑉{𝐓𝐒𝐶𝑘
\𝐄𝐗𝐶𝑘

,𝑂𝐶𝑘}(𝐞𝐱𝐶𝑘
) corresponding to 𝑀𝐴𝐸

{𝐓𝐒𝐶𝑘
\𝐄𝐗𝐶𝑘

,𝑂𝐶𝑘}
(𝐞𝐱𝐶𝑘

) is a certain 

value configuration for each certain value configuration 𝐞𝐱𝐶𝑘
. 

Proof: 

{𝐓𝐒𝐶𝑘
\𝐄𝐗𝐶𝑘

, 𝑂𝐶𝑘} comprises sets of variables {𝑇𝑆𝐶𝑘
\𝐸𝑋𝐶𝑘

, 𝑂𝐶𝑘} along all directed paths through 𝐶𝑘 that 

end at 𝑂𝐶𝑘. We will divide each such set into three subsets {𝑇𝑆𝐶𝑘
\{𝐸𝑋𝐶𝑘

, 𝐶𝑘}}, 𝐶𝑘, and 𝑂𝐶𝑘 and consider a 

value configuration for 𝐞𝐱𝐶𝑘
 for each subset separately. First, since no latent collider can be a child of a latent 

collider (Assumption 5), a value configuration for the subset {𝑇𝑆𝐶𝑘
\{𝐸𝑋𝐶𝑘

, 𝐶𝑘}} is considered to be identical 

to a value configuration for {𝑇𝑆𝑁𝐶𝑣
\𝐸𝑋𝑁𝐶𝑣

}, and thus according to Proposition 3, is a certain value configu-

ration for a certain value 𝑒𝑥𝐶𝑘
. Because 𝑀𝐴𝑉𝑇𝑆𝐶𝑘

\{𝐸𝑋𝐶𝑘
,𝐶𝑘}(𝑒𝑥𝐶𝑘

) is a certain value configuration for a certain 

𝑒𝑥𝐶𝑘
 for each directed path 𝑇𝑆𝐶𝑘

 that is included in 𝐓𝐒𝐶𝑘
, the product of these value configurations, which 

corresponds to the product of 𝑀𝐴𝐸𝑇𝑆𝐶𝑘
\{𝐸𝑋𝐶𝑘

,𝐶𝑘}(𝑒𝑥𝐶𝑘
) in (11), is also certain. Second, since 𝐶𝑘’s parents 

𝐏𝐚𝑘 ⊂ ⋃ {𝑇𝑆𝐶𝑘
\{𝐸𝑋𝐶𝑘

, 𝐶𝑘}}𝑇𝑆𝐶𝑘
∈𝐓𝐒𝐶𝑘

, 𝐩𝐚𝑘

𝐞𝐱𝐶𝑘  are certain value configurations. Thus, based on Proposition 

2, 𝑀𝐴𝑉𝐶𝑘
(𝐩𝐚𝑘

𝐞𝐱𝐶𝑘 ) is also a certain value and similarly 𝑀𝐴𝑉𝑂𝐶𝑘
(𝐶𝑘

𝐞𝐱𝐶𝑘 ) is certain, where 𝐶𝑘

𝐞𝐱𝐶𝑘 =

𝑀𝐴𝑉𝐶𝑘
(𝐩𝐚𝑘

𝐞𝐱𝐶𝑘 ). Therefore, all variables in {𝐓𝐒𝐶𝑘
\𝐄𝐗𝐶𝑘

, 𝑂𝐶𝑘} are certain in the major configuration for a 

certain value configuration 𝐞𝐱𝑪𝑘
. Q.E.D. 

We wish to apply the same mechanism as in Case 1 to analyze the impact of more than a single exogenous 

on a latent collider, but here the impact is propagated toward the collider along more than a single path. To 

accomplish this, the following Proposition 7 analyzes the effect on a collider of each of its exogenous ances-

tors by considering the effect of such an exogenous on the corresponding collider’s parent (using Proposition 

5, similar to Case 1 for a latent non-collider) and then the effect of this parent on the collider itself (using the 

second part of Assumption 7). 

Proposition 7 For every exogenous ancestor 𝐸𝑋𝐶𝑘
∈ 𝐄𝐗𝐶𝑘

 of a latent collider 𝐶𝑘, there are at least two con-

figurations 𝐞𝐱𝐶𝑘
′  and 𝐞𝐱𝐶𝑘

′′  of 𝐄𝐗𝐶𝑘
 in which only 𝐸𝑋𝐶𝑘

of all 𝐄𝐗𝐶𝑘
 changes values when 𝐶𝑘 changes values 

in the two corresponding major value configurations 𝑀𝐴𝑉{𝐓𝐒𝐶𝑘
\𝐄𝐗𝐶𝑘

,𝑂𝐶𝑘}(𝐞𝐱𝐶𝑘
′ ) and 

𝑀𝐴𝑉{𝐓𝐒𝐶𝑘
\𝐄𝐗𝐶𝑘

,𝑂𝐶𝑘}(𝐞𝐱𝐶𝑘
′′ ). 

Proof: 

We divide the proof into two parts. In the first part, we prove that for each exogenous ancestor of a 

latent collider, there are at least two MAVs in which only the collider’s parent on the path from the 

exogenous to the collider (of all collider’s parents) changes values together with the exogenous. We 

are aided in this part of the proof by Proposition 5 after considering the collider’s parent as a latent 

non-collider. In the second part, using Assumption 7, we show that each such collider’s parent changes 

values together with the collider in the same two MAVs in which the parent changes values together 

with the exogenous. Thereby, we prove that for each exogenous ancestor of a latent collider there are 

at least two MAVs in which the collider changes values only with this exogenous.  

For the first part, Proposition 5 guarantees that any exogenous ancestor 𝐸𝑋𝐶𝑘
 of a parent 𝑃𝑎𝑘 ∈ 𝐏𝐚𝑘 of 

collider 𝐶𝑘 (and thus 𝐸𝑋𝑃𝑎𝑘
= 𝐸𝑋𝐶𝑘

 and 𝑃𝑎𝑘  is also a latent non-collider) changes its value if and only if 

𝑃𝑎𝑘  changes its value in two 𝑀𝐴𝑉𝑠{𝑇𝑆𝑃𝑎𝑘
\𝐸𝑋𝑃𝑎𝑘

,𝑂𝑃𝑎𝑘}(𝑒𝑥𝑃𝑎𝑘
). By the opposite of Proposition 5, any exog-

enous ancestor 𝐸𝑋𝐶𝑘
∗  of a parent 𝑃𝑎𝑘

∗ ∈ 𝐏𝐚𝑘\𝑃𝑎𝑘  of 𝐶𝑘 is certain if and only if 𝑃𝑎𝑘
∗  is certain in two 

𝑀𝐴𝑉𝑠{𝑇𝑆𝑃𝑎𝑘
∗ \𝐸𝑋

𝑃𝑎𝑘
∗

∗ ,𝑂𝑃𝑎𝑘
∗ } (𝑒𝑥𝑃𝑎𝑘

∗
∗ ). 

For the second part, we know by Assumption 7 (second part) that for every 𝐶𝑘 that is a latent collider and 

for every 𝑃𝑎𝑘 ∈ 𝐏𝐚𝑘, there are at least two configurations 𝐩𝐚𝑘
′  and 𝐩𝐚𝑘

′′ of 𝐏𝐚𝑘 in which only the value of 

𝑃𝑎𝑘  is different and 𝑀𝐴𝑉𝐶𝑘
(𝐩𝐚′𝑘) ≠ 𝑀𝐴𝑉𝐶𝑘

(𝐩𝐚′′𝑘). That is, the collider (which is the only variable in 

𝑀𝐴𝑉𝐶𝑘
) changes values together with each of its parents in at least two parents’ configurations.  
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Combining the two parts, we have proven that a collider changes values following a change in the 

value of each of its parents in at least two configurations of the parents, when the change of values of 

this parent is due to a change of values of its exogenous ancestor in two exogenous configurations. 

This means that the collider changes values with each of its exogenous ancestors in at least two exog-

enous configurations. That is, for two configurations 𝐞𝐱𝐶𝑘
′  and 𝐞𝐱𝐶𝑘

′′  of 𝐄𝐗𝐶𝑘
 in which only 𝐸𝑋𝐶𝑘

 changes 

values, there are at least two configurations 𝐩𝐚𝑘
′  and 𝐩𝐚𝑘

′′ of 𝐏𝐚𝑘 in which 𝑃𝑎𝑘 ∈ 𝐏𝐚𝑘 changes values in 

𝑀𝐴𝑉{𝐓𝐒𝐶𝑘
\𝐄𝐗𝐶𝑘

,𝑂𝐶𝑘}(𝐞𝐱𝐶𝑘
′ ) and 𝑀𝐴𝑉{𝐓𝐒𝐶𝑘

\𝐄𝐗𝐶𝑘
,𝑂𝐶𝑘}(𝐞𝐱𝐶𝑘

′′ ) with 𝐸𝑋𝐶𝑘
. Since these values of 𝑃𝑎𝑘 in 𝐩𝐚𝑘

′  and 

𝐩𝐚𝑘
′′ also change with values of 𝐶𝑘, 𝐶𝑘 changes values with 𝐸𝑋𝐶𝑘

 in 𝐞𝐱𝐶𝑘
′  and 𝐞𝐱𝐶𝑘.

′′  Therefore, there are at 

least two configurations 𝐞𝐱𝐶𝑘
′  and 𝐞𝐱𝐶𝑘

′′  of 𝐄𝐗𝐶𝑘
 in which only 𝐸𝑋𝐶𝑘

 has changed values when 𝐶𝑘 changes 

values in the two corresponding major value configurations 𝑀𝐴𝑉{𝐓𝐒𝐶𝑘
\𝐄𝐗𝐶𝑘

,𝑂𝐶𝑘}(𝐞𝐱𝐶𝑘
′ ) and 

𝑀𝐴𝑉{𝐓𝐒𝐶𝑘
\𝐄𝐗𝐶𝑘

,𝑂𝐶𝑘}(𝐞𝐱𝐶𝑘
′′ ). Q.E.D. 

Lemma 2 

1) A latent non-collider 𝑁𝐶𝑣 and its observed child 𝑂𝑁𝐶𝑣, both descendants of an exogenous variable 

𝐸𝑋𝑁𝐶𝑣
, change their values in any two major configurations if and only if 𝐸𝑋𝑁𝐶𝑣

 has changed its value 

in the corresponding two configurations of EX. 

2) A latent collider 𝐶𝑘 and its observed child 𝑂𝐶𝑘, both descendants of a set of exogenous variables 𝐄𝐗𝐶𝑘
, 

change their values in any two major configurations, only if at least one of the exogenous variables in 

𝐄𝐗𝐶𝑘
 has changed its value in the corresponding two configurations of EX. 

Proof: 

1) First (“only if”), by Proposition 3, the major value configuration of a latent non-collider 𝑁𝐶𝑣 and its 

observed child 𝑂𝑁𝐶𝑣, both of which are descendants of an exogenous variable 𝐸𝑋𝑁𝐶𝑣
, are certain for 

any certain 𝑒𝑥𝑁𝐶𝑣
. That is, if 𝑁𝐶𝑣 and 𝑂𝑁𝐶𝑣 changed their values in any two major configurations, it is 

only because 𝐸𝑋𝑁𝐶𝑣
 has changed its value in the corresponding two configurations of EX. Second (“if”), 

by Proposition 4, the major value configurations of 𝑁𝐶𝑣 and 𝑂𝑁𝐶𝑣 are changed if 𝐸𝑋𝑁𝐶𝑣
 has changed 

its value between two configurations of EX. Q.E.D. 

2) By Proposition 6, the major value configuration of a collider 𝐶𝑘 and its observed child 𝑂𝐶𝑘 , both of 

which are descendants of a set of exogenous variables 𝐄𝐗𝐶𝑘
, are certain for a certain 𝐞𝐱𝐶𝑘

. That is, if 𝐶𝑘 

and 𝑂𝐶𝑘 changed their values in any two major configurations, it is only because at least one of the 

variables in 𝐄𝐗𝐶𝑘
 also changed its value in the corresponding two configurations of EX. Q.E.D. 

The following two propositions formalize the relationships between the observed major value config-

urations and the set of possible ex. 

Proposition 8 There is only a single observed major value configuration to each exogenous configuration 

ex. 

Proof: 

Based on Lemma 2, different observed major value configurations can be obtained if and only if there 

is more than a single exogenous configuration. Thus, an exogenous configuration ex can only lead to 

a single observed major value configuration. Q.E.D. 

Proposition 9 There are different observed major value configurations to different exogenous configu-

rations exs. 

Proof: 

Assume for the sake of contradiction that two different value configurations 𝐞𝐱1 and 𝐞𝐱2 led to the same 

observed major value configuration. Because the two configurations are different , there is at least one 

exogenous variable 𝐸𝑋′ that has different values in 𝐞𝐱1 and 𝐞𝐱2, and based on Assumption 4, 𝐸𝑋′ has 

at least two observed children. Based on Assumption 7, each of these children has different values in 

the two observed major value configurations due to the different value of 𝐸𝑋′ in 𝐞𝐱1 and 𝐞𝐱2. This is 

contrary to our assumption that there is only one observed major value configuration.  Q.E.D. 
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Table 1.(a) Centroids of Major Clusters for G1 and (b) PCCs between These Major Clusters 

Centroid X1 X2 X3 X4 X5 X6 

C1 0 0 0 1 1 1 

C2 1 1 1 1 1 1 

C3 0 0 0 0 0 0 

C4 1 1 1 0 0 0 

  

 

 

 

 

 

 

 

 

 

PCC 𝜹𝑿𝟏 𝜹𝑿𝟐 𝜹𝑿𝟑 𝜹𝑿𝟒 𝜹𝑿𝟓 𝜹𝑿𝟔 

PCC1,2 1 1 1 0 0 0 

PCC1,3 0 0 0 1 1 1 

PCC1,4 1 1 1 1 1 1 

PCC2,3 1 1 1 1 1 1 

PCC2,4 0 0 0 1 1 1 

PCC3,4 1 1 1 0 0 0 

It
er
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Input data sampled from the unknown model 

Clustering with SOM 

Selection of initial major clusters 

Identification of exogenous latents and latent colliders and their descendants (Section 4.1) 

Distinguishing latent colliders (Section 4.2) 

Selection of new major clusters (Section 4.3) 

Identification of latent non-colliders and their children and the links  

between these latents (Section 4.4) 

Second stage 

First stage 

Figure 2: An overview of the LPCC concept. 

 

(a) 

(b) 
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Note that every two equivalence classes are either equal or disjoint. Therefore, the set of all equivalence 

classes of A forms a partition of A; every element of A belongs to one and only one equivalence class. It 

follows from the properties of an equivalence relation that: a ~ b if and only if [a] = [b]. The following 

Lemma 3 is important since it shows that each MSO is an equivalence class, and thus MSOs corresponding 

to the learned latents are disjoint. At this stage, LPCC learns a set of at least two observed variables corre-

sponding to a specific MSO for each latent where none of the observed variables is shared with other MSOs 

for other latents; in other words, a pure measurement model. 

Lemma 3 The relation “always changes together with” on the set O of all observed variables, such as “vari-

able 𝑂𝑖 ∈ 𝐎 always changes together with variable 𝑂𝑗 ∈ 𝐎 in each PCC in which either 𝑂𝑖  or 𝑂𝑗 has changed” 

is an equivalence relation. Each equivalence class for this relation comprises an MSO. 

Proof: 

All three conditions that are required for a binary relation to become equivalence are met: 

1. 𝑂𝑖  always changes with 𝑂𝑖  (trivial). 

2. If 𝑂𝑖  always changes with 𝑂𝑗, then 𝑂𝑗 always changes with 𝑂𝑖 . 

3. If 𝑂𝑖  always changes with 𝑂𝑗, and 𝑂𝑗 always changes with 𝑂𝑘, then 𝑂𝑖  always changes with 𝑂𝑘. 

Thus, the set of observed variables in a model can be represented by a set of equivalence classes for this 

relation, where each equivalence class includes all the variables that have the same equivalence relation, such 

as an MSO. Q.E.D. 

Theorem 1 Variables of a particular MSO are children of a particular exogenous latent variable EX or its 

latent non-collider descendant or children of a particular latent collider C. 

Proof: 

The proof is divided into two separate cases. In the first case, we show that the children of a particular exog-

enous latent variable or its non-collider descendant belong to the same MSO, and in the second case, we 

show that the children of a particular collider latent belong to the same MSO. 

Case 1: MSO of observed children of an exogenous variable or its latent non-collider descendants. 

Let 𝐎𝐍𝐂𝑖
2 (in 𝐎𝐄𝐗⋃𝐎𝐒) be a set of observed variables that are children of an exogenous variable 𝐸𝑋𝑖 and 

any of its latent non-collider descendants (if they exist), and let 𝐎𝐂𝑖 be a set of observed variables that are 

children of latent colliders where each has 𝐸𝑋𝑖 as an exogenous ancestor with other exogenous variables. 

Note that 𝐎𝐂𝑖 may be empty, if 𝐸𝑋𝑖 does not have any collider descendants, but 𝐎𝐍𝐂𝑖 is never empty because 

it includes at least 𝐎𝐄𝐗𝑖 (Assumption 4). Because no observed child can be included in both 𝐎𝐂𝑖 and 𝐎𝐍𝐂𝑖, 

these sets are disjoint. Their union, 𝐎𝐕𝑖 = 𝐎𝐍𝐂𝑖⋃𝐎𝐂𝑖, includes all the observed variables that are affected 

by 𝐸𝑋𝑖 and thus should change their values when 𝐸𝑋𝑖 changes. 

 First, by Lemma 2 (first part), any subset of variables in 𝐎𝐍𝐂𝑖 (and thus also 𝐎𝐍𝐂𝑖 itself, which is a 

maximal set) always changes together in all PCCs that correspond to a change in 𝐸𝑋𝑖 and never change 

together in any other PCC. These variables belong to the same MSO that represents 𝐸𝑋𝑖. 

 Second, let subset 𝐎𝐂𝑖𝑗 of 𝐎𝐂𝑖 contain all variables that (1) have a shared exogenous ancestor 𝐸𝑋𝑗 (be-

sides 𝐸𝑋𝑖) and (2) change their values together in at least one PCC, which corresponds to a change only 

in the value of 𝐸𝑋𝑗. By Lemma 2, the other variables in 𝐎𝐕𝑖 that are not descendants of 𝐸𝑋𝑗 do not 

change in that PCC. Thus, variables in 𝐎𝐂𝑖𝑗  ∀𝑗 do not belong to the same MSO for which variables in 

𝐎𝐍𝐂𝑖 belong. 

Consequently, variables in 𝐎𝐍𝐂𝑖 will change together only in all PCCs that correspond to a change in 𝐸𝑋𝑖, 

and therefore, will establish a maximal set of the variables 𝐌𝐒𝐎𝑖 = 𝐎𝐍𝐂𝑖 that corresponds to all and only 

observed variables that are children of exogenous variable 𝐸𝑋𝑖 and its latent non-collider descendants. 

                                                           
2 So far, observed variables had their own indices and their parents/ancestors also had these indices. In Theorem 1, the 

index is associated with the exogenous variable (Case 1) and the collider latent (Case 2), since these are the central 

subjects of interest here. 



11 

 

Case 2: MSO of observed children of a latent collider. 

In this case, it is important to note that different colliders and their children are affected by different sets of 

exogenous variables. Thus, we assume: 

Assumption 8 Latent colliders do not share exactly the same sets of exogenous ancestors. 

In case Assumption 8 is violated, for example, if several latent colliders share exactly the same set of exog-

enous ancestors, LPCC does not identify the latent colliders as separate and learns one collider as the parent 

of all children of the latent colliders. Nevertheless, we believe this assumption is very realistic. 

Let 𝐎𝐂𝑖 be the set of the observed variables that are children of latent collider 𝐶𝑖 that is a descendant of a set 

of exogenous variables 𝐄𝐗𝐶𝑖
. By Lemma 2, any variable in 𝐎𝐂𝑖 should not change in any PCC unless at least 

one of its exogenous ancestors changes. The sets of variables that should change together with variables in 

𝐎𝐂𝑖 if any of the exogenous variables in 𝐄𝐗𝐶𝑖
 change is represented by: 

𝐎𝐕 = ⋃ 𝐎𝐕𝑡𝐸𝑋𝑡∈𝐄𝐗𝐶𝑖
= ⋃ {𝐎𝐍𝐂𝑡⋃𝐎𝐂𝑡}𝐸𝑋𝑡∈𝐄𝐗𝐶𝑖

=⋃ {{𝐎𝐍𝐂𝑡}⋃{𝐎𝐂𝑡𝐸𝑋𝑡∈𝐄𝐗𝐶𝑖
∖ 𝐎𝐂𝑖}}⋃𝐎𝐂i, 

(12) 

where the union is over all exogenous ancestors 𝐸𝑋𝑡 of 𝐶𝑖. We separate the proof to include three sets of 

observed variables: 1) 𝐎𝐂𝑖, which are children of 𝐶𝑖; 2) 𝐎𝐍𝐂𝑡, which are children of an exogenous variable 

𝐸𝑋𝑡 and any of its latent non-collider descendants; and 3) {𝐎𝐂𝑡 ∖ 𝐎𝐂𝑖}, which are children of latent colliders, 

other than 𝐂𝑖, that are descendants of 𝐸𝑋𝑡. 

 

 

For example, for latent collider 𝐶𝑖 = L2 in Figure 3, 𝐄𝐗𝐿2
= {L1, L3}, 𝐎𝐂2 = {X4, X5, X6}, 𝐎𝐍𝐂L1 =

{X1, X2, X3}, {𝐎𝐂L1 ∖ 𝐎𝐂2} = {}, 𝐎𝐍𝐂L3 = {X7, X8, X9}, and {𝐎𝐂L3 ∖ 𝐎𝐂2} = {X10, X11, X12}. 

Following, we analyze the three subsets of 𝐎𝐕, specifically, 𝐎𝐂𝑖, 𝐎𝐍𝐂𝑡, and {𝐎𝐂𝑡 ∖ 𝐎𝐂𝑖}, and we show that 

only variables in 𝐎𝐂𝑖 (or any subset of 𝐎𝐂𝑖) will always change together, whereas other variables in 𝐎𝐕 will 

not. We analyze the subsets 𝐎𝐍𝐂𝑡 and {𝐎𝐂t ∖ 𝐎𝐂𝑖} for each exogenous 𝐸𝑋𝑡 ∈ 𝐄𝐗𝐶𝑖
; thus, the analysis is also 

correct for their union (12). 

 𝐎𝐂𝑖: By Lemma 2 (second part), any subset of variables in 𝐎𝐂𝑖 always changes together in all PCCs that 

correspond to a change in at least one exogenous variable in 𝐄𝐗𝐶𝑖
. In addition, none of the variables in 

𝐎𝐂𝑖 has an exogenous ancestor that is not in 𝐄𝐗𝐶𝑖
; therefore, no variable in 𝐎𝐂𝑖 ever changes in any 

PCC that corresponds to an exogenous variable that is not in 𝐄𝐗𝐶𝑖
. These variables belong to the same 

MSO that represents 𝐶𝑖 . 
 𝐎𝐍𝐂𝑡: We previously showed in Case 1, that each 𝐎𝐍𝐂𝑡 forms an MSO that corresponds to a single 

𝐸𝑋𝑡, and this is the only exogenous ancestor for 𝐎𝐍𝐂𝑡. By Lemma 3, an MSO is an equivalence class; 

therefore, no other variable in a subset of 𝐎𝐕 (including 𝐎𝐂𝑖) can be added to 𝐎𝐍𝐂𝑡 and it will still 

remain an MSO. Similarly, no subset of variables in 𝐎𝐍𝐂t can be added to any subset of 𝐎𝐕 to obtain 

an MSO. 

 {𝐎𝐂𝐒t ∖ 𝐎𝐂𝑖}: Any subset of 𝐎𝐂𝐒𝑡 ∖ 𝐎𝐂𝑖 does not change together with any subset of 𝐎𝐂𝑖 because (As-

sumption 8) for each variable 𝑂𝐶𝑗 in 𝐎𝐂𝐒𝑡 ∖ 𝐎𝐂𝑖 , there is an exogenous ancestor 𝐸𝑋𝑗 that is not an 

ancestor of variables in 𝐎𝐂𝑖. Thus, by Proposition 7, 𝑂𝐶𝑗 changes its value in a PCC that corresponds to 

a change only in the value of 𝐸𝑋𝑗, whereas the variables in 𝐎𝐂𝑖, which are not descendants of 𝐸𝑋𝑗, do 

not change in that PCC.  

Consequently, all and only variables in 𝐎𝐂𝑖 (maximal subset of 𝐎𝐂𝑖) compose 𝐌𝐒𝐎𝑖  that changes together 

in all PCCs that correspond to a change in 𝐄𝐗𝐶𝑖
. Q.E.D. 

Figure 3: LVM with two latent colliders. 
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Theorem 2 A latent variable L is a collider of a set of latent ancestors 𝐋𝐀 ⊂ 𝐄𝐗 only if: (1) The values 

of the children of L change in different parts of some major-major PCCs each time with the values of 

descendants of another latent ancestor in LA; and (2) The values of the children of L do not change in 

any PCC unless the values of descendants of at least one of the variables in LA change too. 

Proof: 

Recall that latent variables that have already been learned are either exogenous or colliders. First, we 

show that a latent variable L that satisfies (2) has to be a collider for a set of latent ancestors 𝐋𝐀 ⊂ 𝐄𝐗 

by assuming by contradiction that L is not a collider but an exogenous variable. If L is an exogenous, 

then there exists at least a single major-major 𝑃𝐶𝐶𝐿 that corresponds to two exs in which only L changes 

its value. Thus, in 𝑃𝐶𝐶𝐿, only the values of descendants of 𝐿 change, whereas descendants of other variables 

in any sub-set 𝐋𝐀 ⊂ 𝐄𝐗 do not change. This is in contrast to (2). 

Second, we show that if L satisfies (1), then LA is the set of L’s exogenous ancestors that collide in L. 

Let 𝐎𝐍𝐂𝑖 (in 𝐎𝐄𝐗⋃𝐎𝐒) be the set of observed variables that are children of 𝐿𝐴𝑖 ∈ 𝐋𝐀 or children of its latent 

non-collider descendants. Let 𝐎𝐂𝑖 be the set of children of latent colliders where each has 𝐿𝐴𝑖 as its ancestor 

with other exogenous variables in 𝐋𝐀 or not. 𝐎𝐕𝑖 = 𝐎𝐍𝐂𝑖⋃𝐎𝐂𝑖 includes all the observed variables that are 

affected by 𝐿𝐴𝑖 and thus may change their values when 𝐿𝐴𝑖 changes values. In addition, let 𝐎𝐂𝐿 be the set 

of children of L. We need to show that if L satisfies (1), then 𝐎𝐂𝐿 ⊂ 𝐎𝐂𝑖 for each 𝐿𝐴𝑖 ∈ 𝐋𝐀. Since 𝐿𝐴𝑖 is 

an ancestor of L, (1) ensures that there exists a PCC in which only the values of descendants of 𝐿𝐴𝑖 in-

cluding 𝐎𝐂𝐿 change, whereas the values of descendants of other variables in 𝐋𝐀 ∖ 𝐿𝐴𝑖 do not change. 

Thus, 𝐎𝐂𝐿 ⊂ 𝐎𝐕𝑖. However, none of the children in 𝐎𝐂𝐿 belongs to 𝐎𝐍𝐂𝑖, otherwise it would have already 

been identified (Theorem 1) as a descendant of 𝐿𝐴𝑖. Thus, 𝐎𝐂𝐿 ⊂ 𝐎𝐂𝑖. Q.E.D. 

For an example to demonstrate the need in splitting latent non-colliders from their previously learned ances-

tor, consider G3 in Figure 1, which shows a serial connection of three latent variables L1, L2, and L3. 

Assume each of the latents is binary and has three binary observed children. L1 is the only EX with two 

possible exs (L1= 0, 1), and L2 and L3 are NCs; L2 is a child of L1 and a parent of L3. We synthetically 

generated a random data set of 1,000 patterns from G3 over the nine observed variables. We set the proba-

bilities of: 1) L1 uniformly; 2) an observed child 𝑋𝑖 , 𝑖 = 1, … ,9, given its latent parent 𝐿𝑘 , 𝑘 = 1,2,3 (only if 

𝐿𝑘 is a direct parent of 𝑋𝑖, e.g., L1 and X1), as 𝑃(𝑋𝑖 = 𝑣|𝐿𝑘 = 𝑣) = 0.8, 𝑣 = 0,1; and 3) an endogenous 

latent 𝐿𝑗 , 𝑗 = 2,3, given its latent parent 𝐿𝑘 , 𝑘 = 1,2 (only if 𝐿𝑘 is a direct parent of 𝐿𝑗, e.g., L1 and L2), as 

𝑃(𝐿𝑗 = 𝑣|𝐿𝑘 = 𝑣) = 0.8, 𝑣 = 0,1. Table 2 presents the seventeen largest clusters using their centroids 

and sizes, from which C1 and C2 were selected as major clusters (initially, C1-C6 were selected, be-

cause they are larger than the average cluster size of 21, but then the iterative strategy described in 

Section 4.3 left only C1 and C2 as major clusters). This meets our expectation of two major clusters 

corresponding to the two possible exs of L1. However, because all the elements in PCC1,2 are 1’s 

(compare C1 and C2 in Table 2), the nine observed variables establish a single MSO and by Theorem 

1 are considered descendants of the same exogenous variable. That is, the model G0 learned in the first 

phase of LPCC has only one exogenous latent variable (i.e., L1), and all of the nine observed descend-

ants are learned as its direct children, which is contrary to G3. Since L2 and L3, which are latent non -

colliders that are descendants of L1 in G3, were combined in G0 with L1, LPCC should split them 

from L1 along with their observed children in order to learn the true graph.  

Thus, in the second phase, LPCC tests the assumption that G0 is true. If the assumption is rejected, 

LPCC infers that an exogenous latent EX has latent non-collider descendants, which were temporarily 

joined to EX in the first phase, and hence splits them from EX. To be able to reject the assumption 

about the correctness of G0, and thereby identify a possible split of an exogenous latent EX, we first 

define a first-order minor cluster (1-MC). 

A 1-MC is a cluster that corresponds to a 1-order minor value configuration (Definitions 13 and 14), 

which exists when exactly one endogenous variable in EN (either latent or observed) has a minor local 

value (Definition 13) as a response to a value 𝑒𝑥 ∈ 𝐞𝐱 that 𝐸𝑋 ∈ 𝐄𝐗 has obtained. By analyzing, for 

each exogenous EX, PCCs between 1-MCs and the major clusters that identified EX, LPCC reveals the 

existence of the latent non-colliders that were previously combined with EX (Section 4.1). Following 

that, LPCC splits these non-colliders from EX. We will show that if only one observed variable changes 

in such PCCs (e.g., X9 in PCC1,3 in Table 3; C1 is major and C3 is 1-MC) as a response to ex, then  
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Table 2: The Seventeen Largest Clusters for G3 Represented by Their Centroids and Sizes 

Centroid X1 X2 X3 X4 X5 X6 X7 X8 X9 size 

C1 1 1 1 1 1 1 1 1  1 49 

C2 0 0 0 0 0 0 0 0 0 47 

C3 1 1 1 1 1 1 1 1 0 28 

C4 0 0 0 0 0 0 0 1 0 24 

C5 0 1 0 0 0 0 0 0 0 22 

C6 1 1 1 1 1 1 0 0 0 22 

C7 0 0 1 0 0 0 0 0 0 21 

C8 0 0 0 1 1 1 1 1 1 19 

C9 0 0 0 0 0 0 1 1 1 18 

C10 1 1 1 0 0 0 0 0 0 16 

C11 0 0 0 1 0 0 0 0 0 14 

C12 0 0 0 0 0 0 1 0 0 14 

C13 1 0 1 1 1 1 1 1 1 14 

C14 1 1 1 0 1 1 1 1 1 14 

C15 1 0 0 0 0 0 0 0 0 13 

C16 1 1 1 1 1 1 0 1 1 12 

C17 0 0 0 0 0 1 0 0 0 12 

 

the minor value in the 1-MC is of an observed descendant of EX. And, if two or more observed variables 

change in such PCCs (e.g., X7-X9 in PCC1,6 in Table 4; C1 is major and C6 is 1-MC) as a response 

to ex, then the minor value in the 1-MC is due to a minor value of a latent non-collider descendant of 

EX. Thus, PCCs between 1-MCs and major clusters that show a change in the values of two or more 

observed variables provide evidence to the existence of an NC that should be split from its exogenous 

ancestor. Following, we describe how LPCC finds the set of 1-MCs. Then, we elaborate why and how 

the analysis of the PCCs between 1-MCs and major clusters is used to identify and split latent non-

colliders from their exogenous ancestor. 

To find the set of 1-MCs, LPCC first calculates a threshold on the maximal size of 2-order minor 

clusters (2-MCs). This threshold represents the maximal size of a minor cluster that corresponds to a 

2-order minor value configuration, i.e., a minor cluster that represents exactly two endogenous varia-

bles in EN that have minor values (Definition 13). This threshold is an approximation for the maximal 

probability of having minor values as a response to any ex in exactly two descendants of EX, where all 

other descendants of EX in EN have major values. This approximation is derived from the product of 

the maximal minor local effects (Definition B.1 in Appendix B) of two observed descendants of EX 

and the maximal major local effects (Definition B.1) of the other observed descendants in EN (Appen-

dix B). Thus, the sizes of all 1-MCs lie between the maximal size of a 2-MC (i.e., the threshold) and 

the minimal size of a major cluster (note that a major cluster is also a zero -order minor cluster corre-

sponding to a zero-order minor value configuration). For example, based on the analysis above, C2 is 

the minimal major cluster in learning G3, and all the fifteen clusters (Table 2) that are smaller than C2 

and larger than the threshold (calculated as 11), i.e., C3-C17, are 1-MCs. Note that this procedure is 

separately applied to each 𝐸𝑋 ∈ 𝐄𝐗. That is, for each 𝐸𝑋, there is a different set of 1-MCs, each repre-

senting a single minor value of a descendant of EX and used to identify this descendant, whereas the 

other descendants of EX have major values. 

Recall that every 1-MC corresponds to a 1-order minor value configuration that is due to exactly a 

single minor value of either an observed variable O or a latent non-collider NC, where both O and NC 

are descendants of EX in EN. The main difference between these two cases is that in the former, the 

minor value in O is reflected only in this value, whereas in the lat ter, the minor value in NC may affect 

the values of all descendant latents of NC together with those of all the direct children (observed vari-

ables) of NC and its descendant latents. A minor value in O happens according to the smallest proba-

bility a value of O can take conditioned on a certain value of O’s direct parent. This happens for each 

value of the direct parent and does not require a change in EX to happen. From definition, a minor 

value in O in a 1-order minor value configuration can only happen when all EX’s descendants, except 

O, obtain major values. Although the mechanism of obtaining a minor value in a latent descendant NC 
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of EX is similar to that in O, the impact of such a minor value is not locally restricted to NC, as for O, 

but it simultaneously affects all the descendants (latent and observed) of NC, which again, from defi-

nition, obtain major values. 

We are only interested in the second case of minor values of NC, because their identification helps split 

this NC from its ancestor EX to which it was initially combined (Section 4.1). Since the observed 

variables in both cases are among EX’s descendants, which were already used to identify EX, it is a 

challenge to distinguish between them. Following, we analyze 1-MCs to identify these two cases and 

concentrate on the second case. 

Case 1: A minor value of an observed variable 

When comparing, for a specific EX, two centroids – one of a major cluster and the other of a 1-MC 

that corresponds to an observed minor value configuration (Definition 11) in which an observed vari-

able O, which is a descendant of EX, has a minor value – we can observe that when: 

 EX changes values between two exs that correspond to the compared clusters, all observed 

descendants of EX, except O, change values together, 

and when 

 EX does not change values between two exs that correspond to the compared clusters, the 

only observed descendant of EX that changes value is O. 

Thus, a PCC – between the centroid of such 1-MC and a centroid of any of the major clusters – that 

shows the same value for all, but one (i.e., O), of the observed descendants of EX (i.e., either 1 if EX 

changes values in the corresponding exs or 0 if it does not) identifies a minor value in O. For example, 

in Table 3, PCC1,3 and PCC2,3 of C3, which is a 1-MC, with the two major clusters C1 and C2 (Table 

2) show the set of observed variables X1-X8 that either change values or not together, whereas the 

single observed variable X9 acts contrariwise. This is evidence that C3 is a 1-MC due to exactly a 

single minor value of an observed variable descendent (X9) of L1 in G3. Such an analysis helps LPCC  

ignore, on the one hand, observed descendants of L1 that cannot reflect minor values in L1’s latent 

(non-collider) descendants, and focus, on the other hand, on the latent descendants that should be split 

from L1, as part of Case 2. 

Table 3: PCCs for C3 with C1 and C2 (Table 2) in Learning G3 

 

  

 

 

Case 2: A minor value of a latent non-collider 

The minor value of a latent non-collider NC, which is a descendent of EX, can be reflected only via 

the values of its observed descendants in an observed minor value configuration that is represented by 

a certain 1-MC. By definition, all of these observed descendants have major values in this 1 -order 

minor configuration since only NC has a minor value in this configuration. The major value of each of 

these observed descendants is certain given the minor value of NC (Proposition 2) and different from 

the certain major value it would have if NC had a major value (Assumption 7) instead of its minor 

value. 

When comparing for a specific EX, two centroids – one of a major cluster and the other of a 1-MC that 

corresponds to an observed minor value configuration in which a latent non-collider NC, which is a 

descendant of EX, has a minor value – we can observe that when: 

 EX changes values between two exs that correspond to the compared clusters, all observed 

descendants of EX, but observed descendants of NC, change values together, 

and when 

 EX does not change values between two exs that correspond to the compared clusters, the only 

observed descendants of EX that change values are those of NC. 

Centroid X1 X2 X3 X4 X5 X6 X7 X8 X9 

PCC1,3 0 0 0 0 0 0 0 0  1 

PCC2,3 1 1 1 1 1 1 1 1 0 
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Thus, a PCC – between the centroid of such 1-MC and a centroid of any of the major clusters – that 

shows two sets of two or more observed variables, each set having a different value, identifies a minor 

value in NC. The first set in such a PCC comprises the descendants of NC (with a value of 0 if EX 

changes values in the corresponding exs or 1 if it does not), and the second set comprises all other 

observed variables that are descendants of EX, but not NC (with a value of 1 if EX changes values in 

the corresponding exs or 0 if it does not). For example, PCC1,6 and PCC2,6 (Table 4) of C6, which is 

a 1-MC, with the two major clusters C1 and C2 (Table 2), show two sets of observed variables for G3. 

The first set consists of X1–X6 and the second of X7–X9. This is evidence that C6 is a 1-MC due to a 

minor value of a latent non-collider descendant of L1, and L1 should be split into two latents (each is 

responsible for one of the two sets). One latent (which we know is L3) is a parent of X7, X8, and X9, 

and the other latent is a parent of X1–X6 (which we will show is also split to L1 and L2, each with its 

three children). Distinguishing between Case 1 and Case 2 gives us an instrument to identify latent 

non-colliders. 

Definition 18 2S-PCC is PCC between 1-MC and a major cluster that shows two sets of two or more 

elements corresponding to the observed variables. Elements in each set have the same value, which is 

different than that of the other set. Accordingly, this 1-MC is defined as 2S-MC. 

 

Table 4: All 2S-PCCs for G3 

 

 

 

 

 

 

 

 

 

 

The following Theorem 3 helps formalize this identification step, but to prove this theorem, we first need 

Lemma 4. Recall that the challenge here is to identify a latent non-collider NC that is a descendant of 

an exogenous latent EX, but was wrongly combined with this exogenous ancestor. To face this chal-

lenge, we need to find a circumstance in which EX and NC are involved that is different than that which 

led to the inability to distinguish between them. NC could not be distinguished from EX when we 

analyzed major value configurations. But, although a major value configuration is the most probable 

configuration (Definition 9), minor value configurations are possible too – according to the probability 

tables of the latents, each given its direct parent – albeit less likely. A minor value configuration in 

which only NC takes a minor value (i.e., a first-order minor value configuration) is exactly what we 

need.3 This is because all NC’s latent ancestors, in the first-order minor value configuration, take the 

same major values they took in the major value configuration and thus influence their descendants the 

same. But, the minor value NC takes influences its (latent and observed) descendants differently than 

the major value NC took in the major value configuration. This influence is revealed in the different 

values the observed children of NC and its descendants take compared to the values they took when 

NC had a major value. Since the two value configurations are represented in two corresponding clusters 

– a major cluster and a 2S-MC for NC – the signature of NC can uniquely be detected by comparing 

the two clusters using 2S-PCC.4 

Lemma 4 shows that it is possible to identify NC because: 1) Even when EX leads to major values in 

all NC’s ancestors (and in most cases also in NC), NC can still take a minor value; and 2) even when 

EX changes values, leading all NC’s ancestors to change values as well, NC can still keep the same 

                                                           
3 All other first-order minor value configurations (due to other latent variables, which are also EX’s descendants) 

or k-order minor value configurations (Definition 13) due to EX are irrelevant to the identification of NC, 

although the former – as will be shown in Theorem 3 – play a role in determining the direct observed children 

of NC among its observed descendants. 
4 Any 2S-PCC, which is detected for EX, will point to the NC that corresponds to the 2S-MC that is compared by 

this 2S-PCC. 

Centroid X1 X2 X3 X4 X5 X6 X7 X8 X9 

PCC1,6 0 0 0 0 0 0 1 1 1 

PCC2,6 1 1 1 1 1 1 0 0 0 

PCC1,8 1 1 1 0 0 0 0 0 0 

PCC2,8 0 0 0 1 1 1 1 1 1 

PCC1,9 1 1 1 1 1 1 0 0 0 

PCC2,9 0 0 0 0 0 0 1 1 1 

PCC1,10 0 0 0 1 1 1 1 1 1 

PCC2,10 1 1 1 0 0 0 0 0 0 
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(minor) value. Thereby, minor value configurations for  NC demonstrate its autonomy, enabling its 

identification and its split from EX. 

Lemma 4 A latent non-collider NC is a descendant of an exogenous latent variable EX. 2S-PCC is PCC 

between a “two-set” first-order minor cluster 2S-MC due to a minor value in NC and a major cluster 

that identified EX. 𝐞𝐱′ and 𝐞𝐱′′ are two value configurations of EX that correspond to the compared 

clusters by 2S-PCC. When: 

 EX does not change values between 𝐞𝐱′ and 𝐞𝐱′′, all the elements in 2S-PCC corresponding 

to the observed descendants of the latent ancestors of NC (including EX) show no change 

(i.e., are 0), whereas the elements corresponding to the observed descendants of NC show a 

change (i.e., are 1), 

and when 

 EX changes values between 𝐞𝐱′ and 𝐞𝐱′′, all the elements in 2S-PCC corresponding to the 

observed descendants of the latent ancestors of NC (including EX) show a change (i.e., are 

1), whereas the elements corresponding to the observed descendants of NC show no change 

(i.e., are 0). 

Proof: 
2S-MC represents a 1-order minor configuration of EN in which only NC has a minor value, and all 

the other variables in EN have major values. Thus, when 

 EX does not change values between 𝐞𝐱′ and 𝐞𝐱′′ (i.e., ex′ = ex′′), then 

1. the major value configuration of the latent ancestors of NC is the same for both exs 

(Proposition 3), and for each such latent, each of its observed children has the same 

major local value (Proposition 2) for both exs. Thus, all the observed children of the 

latent ancestors of NC do not change values in both clusters, and all the correspond-

ing elements in 2S-PCC are 0; and 

2. NC may take either a major or minor value in response to  𝐞𝐱′(= 𝐞𝐱′′), depending on 

the probabilities that each of NC’s values takes conditioned on the values NC’s direct 

parent takes. The result of the first case is a major cluster (NC and both its ancestors 

and descendants have major values) and that of the second case is 1 -MC. Since all 

NC’s ancestors and descendants have major values, whereas NC has a minor value, 

this 1-MC is 2S-MC by definition. Using these two clusters, LPCC creates 2S-PCC. 

Since NC d-separates its descendants (both latents and observed) from its ancestors, 

the values of NC’s descendants are determined only by NC in a way similar to that 

which we used to prove Proposition 3. Since we are concerned with the case in which 

NC takes different values for 𝐞𝐱′ and 𝐞𝐱′′, its descendants too have different values 

in the two corresponding configurations, and following Assumption 7, all of their 

observed children have different values in the corresponding observed configurations 

and clusters. Therefore, these children change their values between the clusters, as 

represented by 1s in the 2S-PCC. 

 EX changes values between 𝐞𝐱′ and 𝐞𝐱′′, then 

1. by Proposition 4, all the latent ancestors of NC have different values for 𝐞𝐱′ and 𝐞𝐱′′, 
and by Assumption 7, all the observed children of these latents have different values 

for 𝐞𝐱′ and 𝐞𝐱′′. Thus, in any 2S-PCC between two clusters corresponding to 𝐞𝐱′ and 

𝐞𝐱′′, all the elements that correspond to the observed children of the latent ancestors 

of NC (including EX) show a change (i.e., are 1); and 

2. NC does not change values between 𝐞𝐱′ and 𝐞𝐱′′ because if it did, then by Proposition 

4, all of its latent descendants have different values for 𝐞𝐱′ and 𝐞𝐱′′, and by Assump-

tion 7, all of their observed children have different values in the two corresponding 

observed configurations. And following, in any 2S-PCC between two clusters corre-

sponding to 𝐞𝐱′ and 𝐞𝐱′′, all the elements that correspond to NC and its descendants 

would show a change (i.e., are 1). But, since as we already showed that all the ob-

served children of the ancestors of NC are equal to 1 in these 2S-PCCs, it is contrary 

to the definition of a 2S-PCC that needs two sets of two or more elements of different 

values. Thus, NC cannot change values between 𝐞𝐱′ and 𝐞𝐱′′. Following and by Prop-

osition 3, all the latent descendants of NC have certain values for this certain value 
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of NC in both configurations, and by Proposition 2, all the observed children of these 

latents have certain values in the corresponding observed configurations. Thus, all 

the elements in 2S-PCC that correspond to the observed children of NC and its de-

scendants do not show a change (i.e., are 0). 

Note that the proof implicitly assumes that NC is on a serial connection emerging from EX. In a di-

verging connection, all the latent variables that are on the paths other than the one that includes NC 

can be considered with NC’s ancestors because both the latents on the other paths and NC’s ancestors 

are d-separated (for these 2S-PCCs) by NC from its descendants. Thus, the analysis proposed above 

for a serial connection generalizes also to the diverging connection. Q.E.D. 

Before moving to Theorem 3, let us illustrate the two cases discussed in Lemma 4 for G3. The “EX 

does not change values between 𝐞𝐱′ and 𝐞𝐱′′” case can be demonstrated, for example, when comparing 

C1 and C6 (Table 2). In response to EX(=L1)=1, NC’s (L3) parent (L2) takes a major value of 1 in both 

the value configurations of the latent variables in response to 𝐞𝐱′ = 𝐞𝐱′′. 5 Also, L3 takes a major value of 1 

in the configuration that is represented by C1, which is one of the two major clusters. But, L3, in response to 

the same configuration of its latent ancestors (L1 and L2), takes a minor value of 0 in the value configuration 

that is represented by the 2S-MC C6. By comparing C1 and C6, the corresponding 2S-PCC shows two sets 

of elements: the first of 0s that correspond to the observed variables X1–X6, which do not change values 

between the clusters, and the second of 1s that correspond to X7–X9, which do change values between the 

clusters. This is the evidence we are looking for that is needed to identify L3. 

The “EX changes values between 𝐞𝐱′ and 𝐞𝐱′′” case can be demonstrated, for example, when comparing 

C1 and C9 (Table 2). In response to EX(=L1)=1 and EX(=L1)=0, NC’s (L3) parent (L2) takes a major value 

of 1 in response to L1=1 and a major value of 0 in response to L1=0. In the first instance, L3 takes a major 

value of 1 to create the major configuration that is represented by C1, and in the second instance, L3 takes a 

minor value of 1 in the value configuration that is represented by the 2S-MC C9 (and although the first value 

is major and second is minor, they are both 1). By comparing C1 and C9, the corresponding 2S-PCC shows 

two sets of elements, the first of 1s that correspond to the observed variables X1–X6, which changed values 

between the clusters, and the second of 0s that correspond to X7–X9, which did not change values between 

the clusters. This is additional support to the existence of L3. However, relying only on part of the 2S-PCCs 

may be inadequate to conclude on all possible splits. For example, PCC1,8 and PCC2,8 (Table 4) show that 

X1–X3 and X4–X9 are children of different latents, but do not suggest the split of X7–X9 as PCC1,6 and 

PCC2,6 do. 

Definition 19 A 2S-MSO is the maximal set of observed variables that always change their values together 

in all 2S-PCCs. 

For example, X1 in Table 4 changes its value in PCC2,6, PCC1,8, PCC1,9, and PCC2,10 and always together 

with X2 and X3 (and the other way around). Thus, {X1, X2, X3} and similarly {X4, X5, X6} and {X7, X8, 

X9} are 2S-MSOs. Each 2S-MSO includes children of the same latent non-collider, which is a descendant 

of EX, or EX itself. After computing all 2S-PCCs for EX, LPCC learns 2S-MSOs for all these latent variables 

and thereby identifies all possible splits for EX. Note that compared to MSO (Section 4.1), which is identified 

in major-major PCCs to reveal exogenous latents, 2S-MSO is identified in PCCs between 2S-MCs and major 

clusters to reveal splits of latent non-colliders from the exogenous latent that was previously learned using 

these major clusters. 

Theorem 3 Variables of a particular 2S-MSO are children of an exogenous latent variable EX or any of its 

descendant latent non-colliders NC. 

Proof: 

I. Variables of 2S-MSO that are children of EX 

We need, first, to prove that the children of EX always change values together and second, that no other 

observed child of another latent can always change value with them. First, Lemma 4 guarantees that 

the observed children of EX always change values together since a value change of EX between the 

                                                           
5 Note that the values the three latents take in the two-value configurations can only be inferred from the values their 

children (X1–X3 for L1, X4–X6 for L2, and X7–X9 for L3) take. 
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two exs corresponds to the compared clusters in all 2S-PCCs of 2S-MCs with the major clusters for 

EX. The remainder of the proof is divided into two cases: 1) a serial connection and 2 ) a diverging 

connection. In case 1, there exists at least a single 2S-PCC in which only the observed children of EX 

change. This 2S-PCC is between a major cluster for EX and 2S-MC due to a minor value of the direct 

latent non-collider child NC6 of EX (e.g., L2 is the direct latent non-collider child of L1 in G3).7 Thus, 

only the elements in 2S-PCC that correspond to the observed children of EX show a change and are 

equal to 1 (e.g., PCC2,10 in Table 4), which guarantees that the observed children of EX establish a 

2S-MSO. 

In case 2, the same analysis proposed in case 1 is repeated for each of the direct latent non -collider 

children of EX in each of the paths that emerges from EX. Let us use the same notation NC for each 

such direct child in each path in turn. In this case, not only do the observed children of EX change each 

time EX changes, but also the observed descendants of the other direct latent non-collider children of 

EX (in all paths except that which includes NC) change with EX. This shows that the observed children 

of EX change with the observed descendants of the direct latent non-collider children of EX (all but 

the descendants of NC), but never together with all of them (as at each time, another NC is excluded). 

This guarantees that the observed children of EX establish a 2S-MSO. 

II. Variables of 2S-MSO that are children of EX’s descendant NC 

In a serial connection, we identify three possible situations in which either NC, its latent descendant, 

or its latent ancestor takes a minor value. In each of these situations, no other latent or observed vari-

able can take a minor value because we focus the analysis on 2S-MC through the evaluation of 2S-

PCC between this minor cluster and a major cluster for EX. For each of the three situations, EX may 

change its value or not, so we have to consider six cases:  

1. 2S-MC is due to a minor value of any of NC’s latent non-collider descendants, NC1, and 

EX does not change value between two exs that correspond to the compared clusters. 

Then, by Lemma 4 (first part), all of NC1’s observed descendants do change values but 

all the observed children of NC1’s latent ancestors, including those of NC, do not change 

values. 

2. 2S-MC is due to a minor value of any of NC’s latent non-collider descendants, NC1, and 

EX changes value between two exs that correspond to the compared clusters. Then, by 

Lemma 4 (second part), all of NC1’s observed descendants do not change values but all 

the observed children of NC1’s latent ancestors, including those of NC, change values. 

3. 2S-MC is due to a minor value of NC, and EX does not change value between two exs 

that correspond to the compared clusters. Then, by Lemma 4 (first part), all of NC’s ob-

served descendants do change values but all the observed children of its ancestors do not.  

4. 2S-MC is due to a minor value of NC, and EX changes value between two exs that corre-

spond to the compared clusters. Then, by Lemma 4 (second part), all of NCs observed 

descendants do not change values but all the observed children of its ancestors do.  

5. 2S-MC is due to a minor value of NC’s latent non-collider ancestor, NC1, and EX does 

not change value between two exs that correspond to the compared clusters. Then, by 

Lemma 4 (first part), all the observed children of NC1 and of its latent descendants, in-

cluding those of NC, change values. 

6. 2S-MC is due to a minor value of NC’s latent non-collider ancestor, NC1, and EX changes 

                                                           
6 A) We focus on the latent non-collider NC that is the direct child of EX since only a minor value this NC takes can d-

separate EX and its observed children from NC’s observed children and the observed children of the remaining latent 

non-colliders, and partition the elements in the corresponding 2S-PCC into two sets in which the first consists of the 

observed children of EX and the second consists of the observed children of all EX’s latent descendants. B) In our 

circumstances, where at least a single latent non-collider has been combined with EX, the existence of such a latent 

variable is guaranteed. C) It is also guaranteed that the 1-MC due to the minor value of the direct latent child of 

EX is 2S-MC because it cannot be due to an observed variable (see Case 2 above). 
7 We assume that all possible 1-MCs, including the one corresponding to a minor value of the direct latent non-

collider child NC of EX, are found. Practically, if we err in estimating the threshold on the maximal 2-MC (as 

described above and in Appendix B), we may miss this 1-MC, but this is an identification issue that does not 

affect the correctness of the theorem. 
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value between two exs that correspond to the compared clusters. Then, by Lemma 4 (sec-

ond part), all the observed children of NC1 and of its latent descendants, including those 

of NC, do not change values. 

 

That is, in all six cases, NC’s observed children change values together; in some 2S-PCCs they change 

values with observed children of a latent non-collider ancestor of NC and in some other 2S-PCCs with 

observed children of a latent non-collider descendant of NC. Thus, not only will the set of all the 

observed children of NC always change values together, but also no observed child of any of NC’s 

latent non-collider ancestors or descendants can be part of this set. This means that the set of observed 

children of NC is a maximal set of variables that always change together, i.e., 2S-MSO. 

Note that if NC does not have a latent non-collider descendant or ancestor, then Cases 1 and 2 and 

Cases 5 and 6, respectively, do not exist. In the special case where NC is a leaf (i.e., does not have a 

latent descendant), Case 3 guarantees that there exists at least a single 2S-PCC in which only the 

observed children of NC change. 

In a diverging connection, all the latent variables that are on paths other than the one that includes NC 

can be considered with NC’s ancestors because NC d-separates them all from its descendants. Thus, 

the same analysis proposed in the serial case also holds in the diverging case. Q.E.D. 

After splitting the latent non-collider descendants from their exogenous latent ancestor EX, we need to 

identify the links between these latents. To identify these links, LPCC exploits the following Proposi-

tion 10 and Theorem 4. We will see that in the case of a serial connection, LPCC learns the undirected 

links among the latents, and in the case of a diverging connection, LPCC learns the directed links 

among the latents. That is, LPCC learns a pattern over the structural model of G, which represents a 

Markov equivalence class of models among the latents. In the special case where G has no serial con-

nection, LPCC learns the true graph. 

Proposition 10 In 2S-PCCs in which only the observed children of a single latent change, the latent is 

 EX or its leaf latent non-collider descendant, if the connection is serial; or 

 EX’s leaf latent non-collider descendant, if the connection is diverging. 

Proof: 

We already showed that at least a single 2S-PCC exists in the serial connection case in which only the 

observed children of EX change (Theorem 3). In addition, in the proof of Theorem 3 (II), we already 

showed that for any NC that is a latent non-collider descendent of EX, NC’s observed children change 

values in some 2S-PCCs with observed children of a latent non-collider descendant of NC and in the 

other 2S-PCCs with observed children of a latent non-collider ancestor of NC, but never alone. A spe-

cial case in the proof of Theorem 3 is when NC is a leaf. Then, at least a single 2S-PCC exists in which 

only the children of NC change. Q.E.D. 

We will exemplify Proposition 10 using G3. Table 4 shows all the 2S-PCCs for G3 from which we can 

identify three 2S-MSOs: {X1,X2,X3}, {X4,X5,X6}, and {X7,X8,X9}. If we consider only 2S-PCCs 

due to C1 (the first major cluster), {X1,X2,X3} change alone in PCC1,8, and {X7,X8,X9} change 

alone in PCC1,6. By Proposition 10, these two 2S-MSOs are observed children of an exogenous latent 

variable EX and its leaf latent non-collider descendant. From knowing G3, we know that these two 

latents are L1 and L3. Note that if more than a single leaf of EX exists (i.e., in the case of a diverging 

connection emerging from EX), then for each such leaf, there is a 2S-PCC in which only the observed 

children of this leaf change alone. This will help LPCC to identify a diverging connection and deter-

mine EX as the source in all paths leading to the leaves. As a result, LPCC could identify the correct 

direction of the links among the latents.  

Proposition 10 guarantees that we find the source (EX) and sink of a path (or in the diverging connec-

tion case only the sinks). To identify the directionality between any two latent non-collider variables 

on the path between the source and sink, we will need more. To motivate that, suppose that when 

learning G3, we already identified L1 as EX and L3 as EX’s leaf descendant (Proposition 10), and now 

we have to split L2 from L1 using the two major clusters, C1 and C2 (Table 2), which revealed L1, and 

identify the directionality among these three latent variables. Lemma 4 (first part) guarantees that the 

observed children of a latent non-collider NC1, which is a child of another non-collider NC2 (both are 
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descendants of EX), will change in all 2S-PCCs with the observed children of NC2 except in a single 

additional 2S-PCC due to a minor value of NC1. That is, NC1 is identified as a direct child of NC2, if 

the observed children of NC1 change in all 2S-PCCs (due to a specific major cluster and when EX does 

not change value) in which the children of NC2 change plus in additional 2S-PCCs in which they 

change without the children of NC2.8 In our case, this means that the observed children of L3, which 

is a child of L2, will change values in all 2S-PCCs in which the observed children of L2 change values, 

and also in an additional 2S-PCC, which is due to a minor value in L3. Indeed, PCC1,10 (Table 4), due 

to C1, shows that when EX does not change values and the observed children of L3, {X7,X8,X9}, 

change values, the observed children of L2, {X4,X5,X6}, also change values. In addition, PCC1,6, 

which is the result of comparing C1 and 2-MC C6 due to a minor value of L3, shows that {X7,X8,X9} 

change values without {X4,X5,X6} once. PCC2,8 and PCC2,9 demonstrate the same, when using ma-

jor cluster C2 instead of C1 (and C9 is the 2-MC that reveals the minor value of L3). This provides an 

indication that L3 is a child of L2. 

But, Proposition 10 cannot guarantee distinguishing between EX and its leaf latent non-collider de-

scendant (hereby a “leaf”); hence, what if we mistakenly identified them? In the G3 exa mple, this 

means we identified L3 as EX and L1 as EX’s leaf. Lemma 4 demonstrates an interplay between EX 

and NC (and all of its descendants) as presented in 2S-PCCs due to a minor value in NC; when one of 

them changes, the other does not and vice versa. Because the leaf is one of NC’s descendants, Lemma 

4 guarantees that the observed children of the leaf do not change if and only if EX changes value. That 

is, by the second part of Lemma 4, if EX changes, then the observed children of the leaf do not change. 

Thus, if we find 2S-PCCs that show that the observed children of the leaf do not change, then we have 

evidence that EX changed. This guarantees that the observed children of a latent non-collier NC2 (or 

EX itself), which is a parent of another non-collider NC1, will change in all 2S-PCCs with the observed 

children of NC1, except in a single additional 2S-PCC due to a minor value of NC2 (or if NC2 is EX). 

In our case, this means that the observed children of L1, which is L2’s parent, will change values in 

all 2S-PCCs in which the observed children of L2 change values, and also in an additional 2S -PCC. 

Indeed, PCC1,9 (Table 4), due to C1, shows that when the leaf does not change value and the observed 

children of L1, {X1,X2,X3}, change values, the observed children of L2, {X4,X5,X6}, also change 

values. In addition, PCC1,8 shows that {X1,X2,X3} change values without {X4,X5,X6} once. PCC2,6 

and PCC2,10 demonstrate the same when using major cluster C2 instead of C1. This provides an indi-

cation that L1 is a child of L2, which is the opposite direction between the two in G3. That is, the 

interplay between EX and its leaf lets LPCC identify the directionality between latent non-colliders on 

the path between EX and the leaf, and in both directions. This means that LPCC can identify only the 

undirected links between the latents in the serial case.  

In the diverging case, the children of EX never change alone, and every latent that its children change 

alone in some 2S-PCC is a leaf (Proposition 10). Therefore, by performing an analysis as for the serial 

case using 2S-PCCs in which the observed children of the leaf do not change for each leaf of the 

branches of the diverging connection, LPCC can identify the links among the latents in opposite direc-

tions on each branch. We formalize this by Theorem 4. 

 

 

 

 

                                                           
8 Note that Lemma 4 makes a clear distinction between NC’s ancestors (and their observed children) and NC’s descend-

ants (and their observed children), when NC gets a minor value. That is, all NC’s ancestors follow EX (and change 

values or not with it) and all NC’s descendants follow its change of value. This change of NC “breaks” the influence 

of EX on the latents on the path emerging from EX and “starts” NC’s own influence on its latent descendants. And 

this is what is so important in finding the traces of minor values of endogenous latents through 2S-PCCs, that these 

traces identify the existence of the latents. Particularly, when EX does not change values and all its descendants get 

major values, the observed children of NC1 and NC2 will change together, and it is only a minor value that NC1 gets 

that can make a 2S-PCC in which NC1’s observed children change without those of NC2, and thereby indicate that 

NC1 is NC2’s child. 
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Theorem 4 A latent non-collider NC1 is a direct child of another latent non-collider NC2 (both on the 

same path emerging in EX) only if: 

 In all 2S-PCCs for which EX does not change, the observed children of NC1 always change 

with those of NC2 and also in a single 2S-PCC without the children of NC2; and 

 In all 2S-PCCs for which a latent non-collider leaf descendant of EX does not change, the 

observed children of NC2 always change with those of NC1 and also in a single 2S-PCC with-

out the children of NC1.   

Proof: 

 Let NC1 and NC2 be latent non-collider descendants of EX (both on the same path emerging 

from EX), and NC1 is a direct child of NC2. A 2S-PCC may result from a 2S-MC due to a 

minor value in: 1) a latent ancestor of NC1 (including NC2 itself), 2) NC1, or 3) a latent 

descendent of NC1. In the first type of such 2S-PCC (for which EX does not change), Lemma 

4 (first part) guarantees that the children of NC1 and NC2 change together in (1) and do not 

change at all in (3), whereas in (2) only the observed children of NC1 change. Thus, the chil-

dren of NC1 always change with the children of NC2, and in addition also in a single 2S-PCC 

in which the children of NC2 do not change.  

 In the second type of such 2S-PCC for which the observed children of the leaf latent non-

collider descendant of EX do not change, Lemma 4 (second part) guarantees that EX changes 

value, and the children of NC1 and NC2 do not change at all in (1) and change together in (3), 

whereas in (2) only the observed children of NC2 change. Thus, the children of NC2 always 

change with the children of NC1, and in addition also in a single 2S-PCC in which the children 

of NC2 do not change. The same analysis is true for both a serial and diverging connection. 

Q.E.D. 
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