SS 214, HMWK 4, Due Monday, Feb 13, 2006

1. In the Black-Scholes model write down the PDE for the price of the option with payoff

$$
\left(S^{2}(T)-\frac{1}{T} \int_{0}^{T} S^{2}(t) d t\right)^{+}
$$

and the expression for the replicating portfolio in terms of the price function (both for stock holdings and bank holdings). Hint: Think of this as an exchange option on two assets. The price will be a function of t and two variables, so the PDE will bee two-dimensional.
2. Consider the following model under the risk-neutral probability, with interest rate equal to zero:

$$
\begin{gathered}
d S_{1}(t)=S_{1}(t) \sigma_{1} d B_{1}^{*}(t) \\
d S_{2}(t)=S_{2}(t)\left[\gamma_{1} d B_{1}^{*}(t)+\gamma_{2} d B_{2}^{*}(t)\right]
\end{gathered}
$$

where B_{1}^{*} and B_{2}^{*} are independent.
(a) Find $d\left(S_{2} / S_{1}\right)$.
(b) Find the Brownian Motions corresponding to the probability under which S_{2} / S_{1} is a martingale.
(c) Find the price of the claim with payoff equal to the product $S_{1}(T) S_{2}(T)$. Hints: If you wish, you can use (b) and the change of numeraire technique, with S_{1} as the numeraire; or, you can price directly under the usual riskneutral probability.
3. Assume that the exchange rate process $Q(t)$, denoting the value in dollars of one unit of foreign currency at time t, is given by

$$
d Q=Q\left[\mu_{Q} d t+\sigma_{Q} d B\right] .
$$

We consider trading in the risk-free accounts of the two currencies, with interest rate r for the domestic, and r_{f} for the foreign account. Find $d \tilde{Q}$, where \tilde{Q} is the dollar value of one unit of the foreign account: $\tilde{Q}(t)=Q(t) e^{r_{f} t}$. Use this to argue that a self-financing wealth process (in domestic currency) corresponding to π dollars held in the foreign risk-free account, and the rest in the domestic risk-free account, has the dynamics

$$
\begin{equation*}
d W=\left[r W+\pi\left(\mu_{Q}+r_{f}-r\right)\right] d t+\pi \sigma_{Q} d B \tag{1}
\end{equation*}
$$

Find the relation between B and B^{*}, where B^{*} is the Brownian motion under the probability measure which makes the discounted wealth $W e^{-r t}$ a martingale, and write $d Q$ under this measure.
4. Consider the American contingent claim with payoff $\sqrt{S_{\tau}}$. Assume the interest rate is zero. At what time should the holder of this claim exercise? What is the price equal to when $r=0$?
5. Read Chapter 9.

