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1 Why demand analysis/estimation?

There is a huge literature in recent empirical industrial organization which focuses

on estimation of demand models. Why??

Demand estimation seems mundane. Indeed, most IO theory concerned about supply-

side (firm-side). However, important determinants of firm behavior are costs, which

are usually unobserved.

For instance, consider a fundamental question in empirical IO: how much market

power do firms have? Market power measured by markup: p−mc
p

. Problem: mc not

observed! For example, you observe high prices in an industry. Is this due to market

power, or due to high costs? Cannot answer this question directly, because we don’t

observe costs.

The “new empirical industrial organization” (NEIO; a moniker coined by Bresnahan

(1989)) is motivated by this data problem. NEIO takes an indirect approach, whereby

we obtain estimate of firms’ markups by estimating firms’ demand functions.

Intuition is most easily seen in monopoly example:

• max
p
pq(p)− C(q(p)), where q(p) is demand curve.

• FOC: q(p) + pq′(p) = C ′(q(p))q′(p)

• At optimal price p∗, Inverse Elasticity Property holds:

(p∗ −MC(q(p∗))) = − q(p
∗)

q′(p∗)

or
p∗ −mc (q(p∗))

p∗
= − 1

ε(p∗)
,

where ε(p∗) is q′(p∗)
p∗

q(p∗)
, the price elasticity of demand.
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• Hence, if we can estimate ε(p∗), we can infer what the markup p∗−mc(q(p∗))
p∗

is,

even when we don’t observe the marginal cost mc (q(p∗)).

• Similar exercise holds for oligopoly case (as we will show below).

• Caveat: validity of exercise depends crucially on using the right supply-side

model (in this case: monopoly without entry possibility).

If costs were observed: markup could be estimated directly, and we could test for

vaalidity of monopoly pricing model (ie. test whether markup= −1
ε

).

In these notes, we begin by reviewing some standard approaches to demand estima-

tion, and motivate why recent literature in empirical IO has developed new method-

ologies.

2 Review: demand estimation

• Linear demand-supply model:

Demand: qdt = γ1pt + x′t1β1 + ut1

Supply: pt = γ2q
s
t + x′t2β2 + ut2

Equilibrium: qdt = qst

• Demand function summarizes consumer preferences; supply function summa-

rizes firms’ cost structure

• Focus on estimating demand function:

Demand: qt = γ1pt + x′t1β1 + ut1

• If u1 correlated with u2, then pt is endogenous in demand function: cannot

estimate using OLS. Important problem.
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• Instrumental variable (IV) methods: assume there are instruments Z’s so that

E(u1 · Z) = 0.

• Properties of appropriate instrument Z for endogenous variable p:

1. Uncorrelated with error term in demand equation: E(u1Z) = 0. Exclu-

sion restriction. (order condition)

2. Correlated with endogenous variable: E(Zp) 6= 0. (rank condition)

• The x’s are exogenous variables which can serve as instruments:

1. xt2 are cost shifters; affect production costs. Correlated with pt but not

with ut1: use as instruments in demand function.

2. xt1 are demand shifters; affect willingness-to-pay, but not a firm’s produc-

tion costs. Correlated with qt but not with u2t: use as instruments in

supply function.

The demand models used in empirical IO different in flavor from “traditional”

demand specifications. Start by briefly showing traditional approach, then mo-

tivating why that approach doesn’t work for many of the markets that we are

interested in.

2.1 “Traditional” approach to demand estimation

• Consider modeling demand for two goods 1,2 (Example: food and clothing).

• Data on prices and quantities of these two goods across consumers, across mar-

kets, or over time.

• Consumer demand determined by utility maximization problem:

max
x1,x2

U(x1, x2) s.t. p1x2 + p2x2 = M

• This yields demand functions x∗1(p1, p2,M), x∗2(p1, p2,M).
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• Equivalently, start out with indirect utility function

V (p1, p2,M) = U(x∗1(p1, p2,M), x∗2(p1, p2,M))

• Demand functions derived via Roy’s Identity:

x∗1(p1, p2,M) = −∂V
∂p1

/
∂V

∂M

x∗2(p1, p2,M) = −∂V
∂p2

/
∂V

∂M

This approach is often more convenient empirically.

• This “standard” approach not convenient for many markets which we are in-

terested in: automobile, airlines, cereals, toothpaste, etc. These markets char-

acterized by:

– Many alternatives: too many parameters to estimate using traditional ap-

proach

– At individual level, usually only choose one of the available options (dis-

crete choices). Consumer demand function not characterized by FOC of

utility maximization problem.

These problems have been addressed by

– Modeling demand for a product as demand for the characteristics of that

product: Hedonic analysis (Rosen (1974), Bajari and Benkard (2005)).

This can be difficult in practice when there are many characteristics, and

characteristics not continuous.

– Discrete choice: assume each consumer can choose at most one of the

available alternatives on each purchase occasion. This is the approach

taken in the moden empirical IO literature.

3 Discrete-choice approach to modeling demand

• Starting point: McFadden’s ((1978),(1981)) random utility framework.

4



Lecture notes: Demand in differentiated-product markets 5

• There are J alternatives j = 1, . . . , J . Each purchase occasion, each consumer

i divides her income yi on (at most) one of the alternatives, and on an “outside

good”:

max
j,z

Ui(xj, z) s.t. pj + pzz = yi

where

– xj are chars of brand j, and pj the price

– z is quantity of outside good, and pz its price

– outside good (j = 0) denotes the non-purchase of any alternative (that is,

spending entire income on other types of goods).

• Substitute in the budget constraint (z = y−pn
pz

) to derive conditional indirect

utility functions for each brand:

U∗ij = Ui(xj,
y − pj
pz

).

If outside good is bought:

U∗i0 = Ui(0,
y

pz
).

• Consumer chooses the brand yielding the highest cond. indirect utility:

max
j
U∗ij

• U∗ij specified as sum of two parts. The first part is a function Vij(· · · ) of the

observed variables (prices, characteristics, etc.). The second part is a “utility

shock”, consisting of choice-affecting elements not observed by the econometri-

cian:

U∗ij = Vij(pj, pz, yi) + εij

The utility shock εij is observed by agent i, not by econometrician: we call

this a structural error. From agent’s point of view, utility and choice are

deterministic.
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• Given this specification, the probability that consumer i buys brand j is:

Dij = Prob
{
εi0, . . . , εiJ : U∗ij > U∗ij′ for j′ 6= j

}
If households are identical, so that Vij = Vi′j for i, i′, and ~ε ≡ {εi0, . . . , εiJ}′ is

iid across agents i (and there are a very large number of agents), then Dij is

also the aggregate market share.

• Hence, specific distributional assumptions on ~ε determine the functional form

of choice probabilities. Two common distributional assumptions are:

1. (εi0, . . . , εiJ) distributed multivariate normal: multinomial probit. Choice

probabilities do not have closed form, but they can be simulated (Keane

(1994), McFadden (1989)). (cf. GHK simulator, which we describe in a

different set of lecture notes.)

But model becomes awkward when there are large number of choices, be-

cause number of parameters in the variance matrix Σ also grows very large.

2. (εij, j = 0, . . . , J) distributed i.i.d. type I extreme value across i:

F (ε) = exp

[
− exp

(
−ε− η

µ

)]
with the location parameter η = 0.577 (Euler’s constant), and the scale

parameter (usually) µ = 1.

This leads to multinomial logit choice probabilities:

Dij(· · · ) =
exp(Vij)∑

j′=1,...,J exp(Vij′)

Normalize V0 = 0. (Because
∑J

j=1Dij = 1 by construction.)

Convenient, tractable form for choice probabilities, which scales easily

when the number of goods increases. For this reason, the multinomial

logit model is basis for many demand papers in empirical IO.

Problems with multinomial logit
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Despite its tractibility, the MNL model has restrictive implications, which are partic-

ularly unattractiveness for its uss in a demand setting. Specifically: the odds ratio

between any two brands j, j′ doesn’t depend on number of alternatives available

Dj

Dj′
=

exp(Vj)

exp(Vj′)

This is the Independence of Irrelevant Alternatives (IIA) property.

Example: Red bus/blue bus problem:

• Assume that city has two transportation schemes: walk, and red bus, with

shares 50%, 50%. So odds ratio of walk/RB= 1.

• Now consider introduction of third option: train. IIA implies that odds ratio

between walk/red bus is still 1. Unrealistic: if train substitutes more with bus

than walking, then new shares could be walk 45%, RB 30%, train 25%, then

odds ratio walk/RB=1.5.

• What if third option were blue bus? IIA implies that odds ratio between

walk/red bus would still be 1. Unrealistic: BB is perfect substitute for RB, so

that new shares are walk 50%, RB 25%, bb 25%, and odds ratio walk/RB=2!

• So this is especially troubling if you want to use logit model to predict penetra-

tion of new products.

Implication: invariant to introduction (or elimination) of some alternatives.

If interpret Dij as market share, IIA implies restrictive substitution patterns:

εa,c = εb,c, for all brands a, b 6= c.

If Vj = βj + α(y − pj), then εa,c = −αpcDc, for all c 6= a: Price decrease in brand a

attracts proportionate chunk of demand from all other brands. Unrealistic!

Because of this, the multinomial logit model has been “tweaked” in order to eliminate

the implications of IIA:
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1. Nested logit: assume particular correlation structure among (εi0, . . . , εiN). Within-

nest brands are “closer substitutes” than across-nest brands (This model is

generated by assuming that the utility shocks ~ε follow a “generalized extreme

value” distribution, cf. Maddala (1983, chap. 2)). See Goldberg (1995) for an

application of this to automobile demand.

(Diagram of demand structure from Goldberg paper. One shortcoming of this

approach is that the researcher must know the “tree structure” of the model.)

2. Random coefficients: assume logit model, but for agent i:

U∗ij = X ′jβi − αipj + εij

(coefficients are agent-specific). This allows for valuations of characteristics,

and price-sensitivities, to vary across households. But note that, unlike nested

logit model, IIA is still present at the individual-level decision-making problem

here; the individual-level choice probability is still multionomial-logit in form:

Dij =
exp

(
X ′jβi − αipj

)∑
j′ exp

(
X ′j′βi − αipj′

) .
But aggregate market share is∫

exp
(
X ′jβi − αipj

)∑
j′ exp

(
X ′j′βi − αipj′

) · dF (αi, βi)

and differs from individual choice probability. At the aggregate level, IIA prop-

erty disappears.

We will focus on this model below, because it has been much used in the recent

literature.

4 Berry (1994) approach to estimate demand in

differentiated product markets

Methodology for estimating differentiated-product discrete-choice demand models,

using aggregate data.
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Data structure: cross-section of market shares:

j ŝj pj X1 X2

A 25% $1.50 red large

B 30% $2.00 blue small

C 45% $2.50 green large

Total market size: M

J brands

Note: this is different data structure than that considered in previous contexts: here,

all variation is across brands (and no variation across time or markets).

Background: Trajtenberg (1989) study of demand for CAT scanners. Disturbing

finding: coefficient on price is positive, implying that people prefer more expensive

machines! Upward-sloping demand curves.

(Tables of results from Trajtenberg paper)

Possible explanation: quality differentials across products not adequately controlled

for. In equilibrium of a diff’d product market where each product is valued on the

basis of its characteristics, brands with highly-desired characteristics (higher quality)

command higher prices. Unobserved quality leads to price endogeneity.

���

Here, we start out with simplest setup, with most restrictive assumptions, and later

describe more complicated extensions.

Derive market-level share expression from model of discrete-choice at the individual

household level (i indexes household, j is brand):

Uij = Xjβ − αpj + ξj︸ ︷︷ ︸
≡δj

+εij

9
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where we call δj the “mean utility” for brand j (the part of brand j’s utility which is

common across all households i).

���

Econometrician observes neither ξj or εij, but household i observes both: these are

both “structural errors”.

ξ1, . . . , ξJ are interpreted as “unobserved quality”. All else equal, consumers more

willing to pay for brands for which ξj is high.

Important: ξj, as unobserved quality, is correlated with price pj (and also potentially

with characteristics Xj). It is the source of the endogeneity problem in this demand

model.

Make logit assumption that εij ∼ iid TIEV, across consumers i and brands j.

Define choice indicators:

yij =

{
1 if i chooses brand j

0 otherwise

Given these assumptions, choice probabilities take MN logit form:

Pr (yij = 1|β, xj′ , ξj′ , j′ = 1, . . . , J) =
exp (δj)∑J
j′=0 exp (δj′)

.

Aggregate market shares are:

sj =
1

M
[M · Pr (yij = 1|β, xj′ , ξj′ , j′ = 1, . . . , J)] =

exp (δj)∑J
j′=1 exp (δj′)

≡ s̃j (δ0, δ1, . . . , δJ) ≡ s̃j (α, β, ξ1, . . . , ξJ) .

s̃(· · · ) is the “predicted share” function, for fixed values of the parameters α and β,

and the unobservables ξ1, . . . , ξJ .

���
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• Data contains observed shares: denote by ŝj, j = 1, . . . , J

(Share of outside good is just ŝ0 = 1−
∑J

j=1 ŝj.)

• Model + parameters give you predicted shares: s̃j(α, β, ξ1, . . . , ξJ), j = 1, . . . , J

• Principle: Estimate parameters α, β by finding those values which “match”

observed shares to predicted shares: find α, β so that s̃j(α, β) is as close to ŝj

as possible, for j = 1, . . . , J .

• How to do this? Note that you cannot do nonlinear least squares, i.e.

min
α,β

J∑
j=1

(ŝj − s̃j(α, β, ξ1, . . . , ξJ))2 (1)

This problem doesn’t fit into standard NLS framework, because you need to

know the ξ’s to compute the predicted share, and they are not observed.

���

Berry (1994) suggests a clever IV-based estimation approach.

Assume there exist instruments Z so that E (ξZ) = 0

Sample analog of this moment condition is

1

J

J∑
j=1

ξjZj =
1

J

J∑
j=1

(δj −Xjβ + αpj)Zj

which converges (as J → ∞) to zero at the true values α0, β0. We wish then to

estimate (α, β) by minimizing the sample moment conditions.

Problem with estimating: we do not know δj! Berry suggest a two-step approach

First step: Inversion

11
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• If we equate ŝj to s̃j (δ0, δ1, . . . , δJ), for all j, and normalize δ0 = 0, we get a

system of J nonlinear equations in the J unknowns δ1, . . . , δJ :

ŝ1 = s̃1 (δ1, . . . , δJ)

...
...

ŝJ = s̃J (δ1, . . . , δJ)

• You can “invert” this system of equations to solve for δ1, . . . , δJ as a function

of the observed ŝ1, . . . , ŝJ .

• Note: the outside good is j = 0. Since 1 =
∑J

j=0 ŝj by construction, you

normalize δ0 = 0.

• Output from this step: δ̂j ≡ δj (ŝ1, . . . , ŝJ) , j = 1, . . . , J (J numbers)

Second step: IV estimation

• Going back to definition of δj’s:

δ1 = X1β − αp1 + ξ1
...

...

δJ = XJβ − αpJ + ξJ

• Now, using estimated δ̂j’s, you can calculate sample moment condition:

1

J

J∑
j=1

(
δ̂j −Xjβ + αpj

)
Zj

and solve for α, β which minimizes this expression.

• If δj is linear in X, p and ξ (as here), then linear IV methods are applicable

here. For example, in 2SLS, you regress pj on Zj in first stage, to obtain fitted

prices p̂(Zj). Then in second stage, you regression δj on Xj and p̂(Zj).

Later, we will consider the substantially more complicated case when the under-

lying demand model is the random-coefficients logit model, as in Berry, Levin-

sohn, and Pakes (1995).

12
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���

What are appropriate instruments (Berry, p. 249)?

• Usual demand case: cost shifters. But since we have cross-sectional (across

brands) data, we require instruments to very across brands in a market.

• Take the example of automobiles. In traditional approach, one natural cost

shifter could be wages in Michigan.

• But here it doesn’t work, because its the same across all car brands (specifically,

if you ran 2SLS with wages in Michigan as the IV, first stage regression of price

pj on wage would yield the same predicted price for all brands).

• BLP exploit competition within market to derive instruments. They use IV’s

like: characteristics of cars of competing manufacturers. Intuition: oligopolistic

competition makes firm j set pj as a function of characteristics of cars produced

by firms i 6= j (e.g. GM’s price for the Hum-Vee will depend on how closely

substitutable a Jeep is with a Hum-Vee). However, characteristics of rival cars

should not affect households’ valuation of firm j’s car.

• In multiproduct context, similar argument for using characteristics of all other

cars produced by same manufacturer as IV.

• With panel dataset, where prices and market shares for same products are ob-

served across many markets, could also use prices of product j in other markets

as instrument for price of product j in market t (eg. Nevo (2001), Hausman

(1996)).

���

One simple case of inversion step:

MNL case: predicted share s̃j (δ1, . . . , δJ) =
exp(δj)

1+
∑J

j′=1 exp(δj′)

13
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The system of equations from matching actual to predicted shares is:

ŝ0 =
1

1 +
∑J

j=1 exp(δj)

ŝ1 =
exp(δ1)

1 +
∑J

j=1 exp(δj)

...
...

ŝJ =
exp(δJ)

1 +
∑J

j=1 exp(δj)
.

Taking logs, we get system of linear equations for δj’s:

log ŝ1 = δ1 − log (denom)

...
...

log ŝJ = δJ − log (denom)

log ŝ0 = 0− log (denom)

which yield

δj = log ŝj − log ŝ0, j = 1, . . . , J.

So in second step, run IV regression of

(log ŝj − log ŝ0) = Xjβ − αpj + ξj. (2)

Eq. (2) is called a “logistic regression” by bio-statisticians, who use this logistic trans-

formation to model “grouped” data. So in the simplest MNL logit, the estimation

method can be described as “logistic IV regression”.

See Berry paper for additional examples (nested logit, vertical differentiation).

���
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4.1 Measuring market power: recovering markups

• Next, we show how demand estimates can be used to derive estimates of firms’

markups (as in monopoly example from the beginning).

• From our demand estimation, we have estimated the demand function for brand

j, which we denote as follows:

Dj

X1, . . . , XJ︸ ︷︷ ︸
≡ ~X

; p1, . . . , pJ︸ ︷︷ ︸
≡~p

; ξ1, . . . , ξJ︸ ︷︷ ︸
≡~ξ


• Specify costs of producing brand j:

Cj (qj, wj, ωj)

where qj is total production of brand j, wj are observed cost components asso-

ciated with brand j (e.g. could be characteristics of brand j), ωj are unobserved

cost components (another structural error)

• Then profits for brand j are:

Πj = Dj
(
~X, ~p, ~ξ

)
pj − Cj

(
Dj
(
~X, ~p, ~ξ

)
, wj, ωj

)
• For multiproduct firm: assume that firm k produces all brands j ∈ K. Then its

profits are

Π̃k =
∑
j∈K

Πj =
∑
j∈K

[
Dj
(
~X, ~p, ~ξ

)
pj − Cj

(
Dj
(
~X, ~p, ~ξ

)
, wj, ωj

)]
.

Importantly, we assume that there are no (dis-)economies of scope, so that

production costs are simply additive across car models, for a multiproduct firm.

• In order to proceed, we need to assume a particular model of oligopolistic com-

petition.

The most common assumption is Bertrand (price) competition. (Note that

because firms produce differentiated products, Bertrand solution does not result

in marginal cost pricing.)

15
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• Under price competition, equilibrium prices are characterized by J equations

(which are the J pricing first-order conditions for the J brands):

∂Π̃k

∂pj
= 0, ∀j ∈ K, ∀k

⇔Dj +
∑
j′∈K

∂Dj′

∂pj

(
pj′ − Cj′

1 |qj′=Dj′

)
= 0

where Cj
1 denotes the derivative of Cj with respect to first argument (which is

the marginal cost function).

• Note that because we have already estimated the demand side, the demand

functions Dj, j = 1, . . . , J and full set of demand slopes ∂Dj′

∂pj
, ∀j, j′ = 1, . . . , J

can be calculated.

Hence, from these J equations, we can solve for the J margins pj −Cj
1 . In fact,

the system of equations is linear, so the solution of the marginal costs Cj
1 is just

~c = ~p+ (∆D)−1 ~D

where c and D denote the J-vector of marginal costs and demands, and the

derivative matrix ∆D is a J × J matrix where

∆D(i,j) =

{
∂Di

∂pj
if models (i, j) produced by the same firm

0 otherwise.

The markups measures can then be obtained as
pj−Cj

1

pj
.

This is the oligopolistic equivalent of using the “inverse-elasticity” condition to

calculate a monopolist’s market power.

16
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5 Berry, Levinsohn, and Pakes (1995): Demand

and supply estimation using random-coefficients

logit model

Next we discuss the case of the random coefficients logit model, which is the main

topic of Berry, Levinsohn, and Pakes (1995).

• Assume that utility function is:

uij = Xjβi − αipj + ξj + εij

The difference here is that the slope coefficients (αi, βi) are allowed to vary

across households i.

• We assume that, across the population of households, the slope coefficients

(αi, βi) are i.i.d. random variables. The most common assumption is that these

random variables are jointly normally distributed:

(αi, βi)
′ ∼ N

((
ᾱ, β̄

)′
,Σ
)
.

For this reason, αi and βi are called “random coefficients”.

Hence, ᾱ, β̄, and Σ are additional parameters to be estimated.

• Given these assumptions, the mean utility δj is Xjβ̄ − ᾱpj + ξj, and

uij = δj + εij + (βi − β̄)Xj − (αi − ᾱ)pj

so that, even if the εij’s are still i.i.d. TIEV, the composite error is not. Here,

the simple MNL inversion method will not work.

• The estimation methodology for this case is developed in Berry, Levinsohn, and

Pakes (1995).

• First note: for a given αi, βi, the choice probabilities for household i take MNL

form:

Pr(i, j) =
exp (Xjβi − αipj + ξj)

1 +
∑J

j′=1 exp (Xj′βi − αipj′ + ξj′)
.

17
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• In the whole population, the aggregate market share is just

s̃j =

∫ ∫
Pr(i, j, )dG(αi, βi)

=

∫ ∫
exp (Xjβi − αipj + ξj)

1 +
∑J

j′=1 exp (Xj′βi − αipj′ + ξj′)
dG(αi, βi)

=

∫ ∫
exp

(
δj + (βi − β̄)Xj − (αi − ᾱ)pj

)
1 +

∑J
j′=1 exp

(
δj′ + (βi − β̄)Xj′ − (αi − ᾱ)pj′

)dG(αi, βi)

≡ s̃RCj
(
δ1, . . . , δJ ; ᾱ, β̄,Σ

)
(3)

that is, roughly speaking, the weighted sum (where the weights are given by the

probability distribution of (α, β)) of Pr(i, j) across all households.

The last equation in the display above makes explicit that the predicted market

share is not only a function of the mean utilities δ1, . . . , δJ (as before), but also

functions of the parameters ᾱ, β̄,Σ. Hence, the inversion step described before

will not work, because the J equations matching observed to predicted shares

have more than J unknowns (i.e. δ1, . . . , δJ ; ᾱ, β̄,Σ).

Moreover, the expression in Eq. (3) is difficult to compute, because it is a

multidimensional integral. BLP propose simulation methods to compute this

integral. We will discuss simulation methods later. For the rest of these notes,

we assume that we can compute s̃RCj for every set of parameters ᾱ, β̄,Σ.

���

We would like to proceed, as before, to estimate via GMM, exploiting the population

moment restriction E (ξZm) = 0, i = 1, . . . ,M . Let θ ≡ (ᾱ, β̄,Σ). Then the sample

moment conditions are:

mm,J(θ) ≡ 1

J

J∑
j=1

(
δj −Xjβ̄ + ᾱpj

)
Zmj

and we estimate θ by minimizing a quadratic norm in these sample moment functions:

min
θ
QJ(θ) ≡ [mm,J(θ)]′mWJ [mm,J(θ)]m

18
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WJ is a (M ×M)-dimensional weighting matrix.

But problem is that we cannot perform inversion step as before, so that we cannot

derive δ1, . . . , δJ .

So BLP propose a “nested” estimation algorithm, with an “inner loop” nested within

an “outer loop”

• In the outer loop, we iterate over different values of the parameters. Let θ̂ be

the current values of the parameters being considered.

• In the inner loop, for the given parameter values θ̂, we wish to evaluate the

objective function Q(θ̂). In order to do this we must:

1. At current θ̂, we solve for the mean utilities δ1(θ̂), . . . , δJ(θ̂) to solve the

system of equations

ŝ1 = s̃RC1

(
δ1, . . . , δJ ; θ̂

)
...

...

ŝJ = s̃RCJ

(
δ1, . . . , δJ ; θ̂

)
.

Note that, since we take the parameters θ̂ as given, this system is J equa-

tions in the J unknowns δ1(θ̂), . . . , δJ(θ̂).

2. For the resulting δ1(θ̂), . . . , δJ(θ̂), calculate

Q(θ̂) = [mm,J(θ̂)]′mWJ [mm,J(θ̂)]m (4)

• Then we return to the outer loop, which searches until it finds parameter values

θ̂ which minimize Eq. (4).

• Essentially, the original inversion step is now nested inside of the estimation

routine.

Note that, typically, for identification, a necessary condition is that:

M = dim(~Z) ≥ dim(θ) > dim(α, β) = dim([X, p]).

19
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This is because there are coefficeints Σ associated with the distribution of random

coefficients. This implies that, even if there were no price endogeneity problem, so

that (X, p) are valid instruments, we still need additional instruments in order to

identify the additional parameters.1

5.1 Estimating equilibrium: both demand and supply side

Within this nested estimation procedure, we can also add a supply side to the RC

model.

Let us make the further assumption that marginal costs are constant, and linear in

cost components:

Cj
1 = cj ≡ wjγ + ωj

(where γ are parameters in the marginal cost function) then the best-response equa-

tions become

Dj +
∑
j′∈K

∂Dj′

∂pj

(
pj′ − cj

)
= 0. (5)

Assume you have instruments Uj such that E (ωU) = 0. From the discussion previ-

ously, these instruments would be “demand shifters” which would affect pricing and

sales but unrelated to production costs.

With both demand and supply-side moment conditions, the objective function be-

comes:

Q (θ, γ) = GJ(θ, γ)′WJGJ(θ, γ)

1See Moon, Shum, and Weidner (2012).

20
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where GJ is the (M +N)-dimensional vector of stacked sample moment conditions:

GJ(θ, γ) ≡



1
J

∑J
j=1

(
δj(θ)−Xjβ̄ + ᾱpj

)
z1j

...
1
J

∑J
j=1

(
δj(θ)−Xjβ̄ + ᾱpj

)
zMj

1
J

∑J
j=1 (cj(θ)− wjγ)u1j

...
1
J

∑J
j=1 (cj(θ)− wjγ)uNj


where M is the number of demand side IV’s, and N the number of supply-side IV’s.

(Assuming M +N ≥ dim(θ) + dim(γ))

The only change in the estimation routine described in the previous section is that

the inner loop is more complicated:

In the inner loop, for the given parameter values θ̂ and γ̂, we wish to evaluate the

objective function Q(θ̂, γ̂). In order to do this we must:

1. At current θ̂, we solve for the mean utilities δ1(θ̂), . . . , δJ(θ̂) as previously.

2. For the resulting δ1(θ̂), . . . , δJ(θ̂), calculate

~̃sRCj (θ̂) ≡
(
s̃RC1 (δ(θ̂)), . . . , s̃RCJ (δ(θ̂))

)′
and also the partial derivative matrix

D(θ̂) =


∂s̃RC

1 (δ(θ̂))

∂p1

∂s̃RC
1 (δ(θ̂))

∂p2
· · · ∂s̃RC

1 (δ(θ̂))

∂pJ
∂s̃RC

2 (δ(θ̂))

∂p1

∂s̃RC
2 (δ(θ̂))

∂p2
· · · ∂s̃RC

2 (δ(θ̂))

∂pJ
...

...
. . .

...
∂s̃RC

J (δ(θ̂))

∂p1

∂s̃RC
J (δ(θ̂))

∂p2
· · · ∂s̃RC

J (δ(θ̂))

∂pJ


For MN logit case, these derivatives are:

∂sj
∂pk

=

{
−αsj(1− sj) for j = k

−αsjsk for j 6= k.
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3. Use the supply-side best response equations to solve for c1(θ̂), . . . , cJ(θ̂):

~̃sRCj (θ̂) + D(θ̂) ∗

 p1 − c1
...

pJ − cJ

 = 0.

4. So now, you can compute G(θ̂, γ̂).

5.2 Simulating the integral in Eq. (3)

The principle of simulation: approximate an expectation as a sample

average. Validity is ensured by law of large numbers.

In the case of Eq. (3), note that the integral there is an expectation:

E
(
ᾱ, β̄,Σ

)
≡ EG

[
exp

(
δj + (βi − β̄)Xj − (αi − ᾱ)pj

)
1 +

∑J
j′=1 exp

(
δj′ + (βi − β̄)Xj′ − (αi − ᾱ)pj′

) |ᾱ, β̄,Σ]
where the random variables are αi and βi, which we assume to be drawn from the

multivariate normal distribution N
(
(ᾱ, β̄)′,Σ

)
.

For s = 1, . . . , S simulation draws:

1. Draw us1, u
s
2 independently from N(0,1).

2. For the current parameter estimates ˆ̄α, ˆ̄β, Σ̂, transform (us1, u
s
2) into a draw

from N
(

( ˆ̄α, ˆ̄β)′, Σ̂
)

using the transformation(
αs

βs

)
=

(
ˆ̄α
ˆ̄β

)
+ Σ̂1/2

(
us1
us2

)

where Σ̂1/2 is shorthand for the “Cholesky factorization” of the matrix Σ̂. The

Cholesky factorization of a square symmetric matrix Γ is the triangular matrix

G such that G′G = Γ, so roughly it can be thought of a matrix-analogue of

“square root”. We use the lower triangular version of Σ̂1/2.
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Then approximate the integral by the sample average (over all the simulation draws)

E
(

ˆ̄α, ˆ̄β, Σ̂
)
≈ 1

S

S∑
s=1

exp
(
δj + (βs − ˆ̄β)Xj − (αs − ˆ̄α)pj

)
1 +

∑J
j′=1 exp

(
δj′ + (βs − ˆ̄β)Xj′ − (αs − ˆ̄α)pj′

) .
For given ˆ̄α, ˆ̄β, Σ̂, the law of large numbers ensure that this approximation is accurate

as S →∞.

(Results: marginal costs and markups from BLP paper)

6 Applications

Applications of this methodology have been voluminous. Here discuss just a few.

1. evaluation of VERs In Berry, Levinsohn, and Pakes (1999), this methodology

is applied to evaluate the effects of voluntary export restraints (VERs). These were

voluntary quotas that the Japanese auto manufacturers abided by which restricted

their exports to the United States during the 1980’s.

The VERs do not affect the demand-side, but only the supply-side. Namely, firm

profits are given by:

πk =
∑
j∈K

(pj − cj − λV ERk)D
j.

In the above, V ERk are dummy variables for whether firm k is subject to VER (so

whether firm k is Japanese firm). VER is modelled as an “implicit tax”, with λ ≥ 0

functioning as a per-unit tax: if λ = 0, then the VER has no effect on behavior, while

λ > 0 implies that VER is having an effect similar to increase in marginal cost cj.

The coefficient λ is an additional parameter to be estimated, on the supply-side.

Results (effects of VER on firm profits and consumer welfare)
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2. Welfare from new goods, and merger evaluation After cost function

parameters γ are estimated, you can simulate equilibrium prices under alternative

market structures, such as mergers, or entry (or exit) of firms or goods. These

counterfactual prices are valid assuming that consumer preferences and firms’ cost

functions don’t change as market structures change. Petrin (2002) presents consumer

welfare benefits from introduction of the minivan, and Nevo (2001) presents merger

simulation results for the ready-to-eat cereal industry.

3. Geographic differentiation In our description of BLP model, we assume that

all consumer heterogeneity is unobserved. Some models have considered types of

consumer heterogeneity where the marginal distribution of the heterogeneity in the

population is observed. In BLP’s original paper, they include household income in

the utility functions, and integrate out over the population income distribution (from

the Current Population Survey) in simulating the predicted market shares.

Another important example of this type of obbserved consumer heterogeneity is con-

sumers’ location. The idea is that the products are geographically differentiated, so

that consumers might prefer choices which are located closer to their home. Assume

you want to model competition among movie theaters, as in Davis (2006). The utility

of consumer i from theater j is:

Uij = −αpj + β(Li − Lj) + ξj + εij

where (Li − Lj) denotes the geographic distance between the locations of consumer

I and theater j. The predicted market shares for each theater can be calculated

by integrating out over the marginal empirical population density (ie. integrating

over the distribution of Li). See also Thomadsen (2005) for a model of the fast-

food industry, and Houde (2012) for retail gasoline markets. The latter paper is

noteworthy because instead of integrating over the marginal distribution of where

people live, Houde integrates over the distribution of commuting routes. He argues

that consumers are probably more sensitive to a gasoline station’s location relative

to their driving routes, rather than relative to their homes.
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A Additional details: general presentation of ran-

dom utility models

Introduce the social surplus function

H(~U) ≡ E
{

max
j∈J

(Uj + εj)

}
where the expectation is taken over some joint distribution of (ε1, . . . , εJ).

For each λ ∈ [0, 1], for all values of ~ε, and for any two vectors ~U and ~U ′, we have

max
j

(λUj + (1− λ)U ′j + εj) ≤ λmax
j

(Uj + εj) + (1− λ) max
j

(U ′j + εj).

Since this holds for all vectors ~ε, it also holds in expectation, so that

H(λ~U + (1− λ) ~U ′) ≤ λH(~U) + (1− λ)H( ~U ′).

That is, H(·) is a convex function. We consider its Fenchel-Legendre transformation2

defined as

H∗(~p) = max
~U

(~p · ~U −H(~U))

where ~p is some J-dimensional vector of choice probabilities. Because H is convex we

have that the FOCs characterizing H∗ are

~p = ∇~UH(~U). (6)

Note that for discrete-choice models, this function is many-to-one. For any constant

k, H(~U + k) = H(~U) + k, and hence if ~U satisfies ~p = ∇~UH(~U), then also ~p =

∇~UH(~U + k).

H∗(·) is also called the “conjugate” function of H(·). Furthermore, it turns out that

the conjugate function of H∗(~p) is just H(~U) – for this reason, the functions H∗ and

H have a dual relationship, and

H(~U) = max
~p

(~p · ~U −H∗(~p)).

2See Gelfand and Fomin (1965), Rockafellar (1971), Chiong, Galichon, and Shum (2013).
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with
~U ∈ ∂~pH∗(~p) (7)

where ∂~pH
∗(~p) denotes the subdifferential (or, synonymously, subgradiant or sub-

derivative) of H∗ at ~p. For discrete choice models, this is typically a multi-valued

mapping (a correspondence) because ∇H(~U) is many-to-one.3 In the discrete choice

literature, equation (6) is called the William-Daly-Zachary theorem, and analogous

to the Shepard/Hotelling lemmas, for the random utility model. Eq. (7) is a precise

statement of the “inverse mapping” from choice probabilities to utilities for discrete

choice models, and thus reformulates (and is a more general statement of) the “in-

version” result in Berry (1994) and BLP (1995).

For specific assumptions on the joint distribution of ~ε (as with the generalized extreme

value case above), we can derive a closed form for the social surplus function H(~U),

which immediately yield the choice probabilities via Eq. (6) above.

For the multinomial logit model, we know that

H(~U) = log

(
K∑
i=0

exp(Ui)

)
.

From the conjugacy relation, we know that ~p = ∇H(~U). Normalizing U0 = 0, this

leads to Ui = log(pi/p0) for i = 1, . . . , K. Plugging this back into the definition of

H∗(~p), we get that

H∗(~p) =
K∑
i′=0

pi′ log(pi′/p0)− log

(
1

p0

K∑
i′=0

pi′

)
(8)

=
K∑
i′=1

pi′ log pi′ − log p0

K∑
i′=1

pi′ + log p0 (9)

=
K∑
i′=0

pi′ log pi′ . (10)

3Indeed, in the special case where ∇H(·) is one-to-one, then we have ~U = (∇H(~p)). This is the

case of the classical Legendre transform.
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To confirm, we again use the conjugacy relation ~U = ∇H∗(~p) to get (for i =

0, 1, . . . , K) that Ui = log pi. Then imposing the normalization U0 = 0, we get

that Ui = log(pi/p0).
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