Ma144A, Homework 7 Due Friday, December 4th

Collaboration on homework is encouraged, but individually written solutions are required. Also, please name all collaborators and sources of information on each assignment; any such named source may be used.

- (1) Let X be a bounded random variable with mean 0. Let $X, X_1, X_2, ...$ be an i.i.d. sequence, and let $Z_n = \frac{1}{n} \sum_{k=1}^n X_k$.
 - (a) Show that conditioned on a large deviation, the deviation is as small as possible, in the sense that for every $\eta > 0$ with $\mathbb{P}[X \ge \eta] > 0$, and for every $\varepsilon > 0$,

$$\lim_{n \to \infty} \mathbb{P}\left[\eta \le Z_n \le \eta + \varepsilon | \eta \le Z_n\right] = 1.$$

(b) Suppose X is symmetric: $\mathbb{P}[X \leq a] = \mathbb{P}[-X \leq a]$ for all $a \in \mathbb{R}$.

Let $\eta > 0 > \zeta$ with $\mathbb{P}[X \ge \eta] > 0$ and $\mathbb{P}[X \le \zeta] > 0$. Let A_n be the event $\{Z_n \ge \eta \text{ or } Z_n \le \zeta\}$. Calculate the rate $\lim_n -\frac{1}{n} \log \mathbb{P}[A_n]$ in terms of K_X^{\star} , η and ζ .

(2) Let G be a group generated by the finite, symmetric set S of size d. The transition matrix P of the associated simple random walk is given by

$$P(g,h) = \begin{cases} \frac{1}{d} & \text{if } h = gs \text{ for some } s \in S\\ 0 & \text{otherwise.} \end{cases}$$

Note that P(g,h) = P(h,g), since S is symmetric. For $f: G \to \mathbb{R}$ we denote by Pf the function on G given by $[Pf][g] = \sum_{h} P(g,h)f(h) = \sum_{h} P(h,g)f(h)$. Note that $f \mapsto Pf$ is a linear operator.

For $f: G \to \mathbb{R}$ We denote $||f||_p = \left(\sum_g |f(g)|^p\right)^{1/p}$ and $\ell^p(G) = \{f: G \to \mathbb{R} : ||f||_p < \infty\}$. Given a subset $F \subseteq G$, we denote

$$\partial F = \{ g \in F : gs \notin F \text{ for some } s \in S \}.$$

Omer Tamuz. Email: tamuz@caltech.edu.

We say that G is *amenable* if

$$\inf_{\text{finite}F\subset G}\frac{|\partial F|}{|F|} = 0$$

(If you are interested, you can verify that amenability does not depend on the choice of generating set.)

- (a) Prove that if $f \ge 0$ then $||Pf||_1 = ||f||_1$.
- (b) Prove that if $f \ge 0$ then $||Pf||_2 \le ||f||_2$. Hint: Write $P = \frac{1}{d}(P_1 + \dots + P_d)$, where for each P_i there is an $s_i \in S$ such that $P_i(g, h) = 1$ iff $h = gs_i$. Then use the fact (which follows from the triangle inequality) that $||\sum_i \alpha_i f_i||_2 \le \sum_i |\alpha_i| \cdot ||f_i||_2$.
- (c) Prove that if G is amenable then for each $\varepsilon > 0$ there is an $f \in \ell^2(G)$ such that $\|Pf\|_2 \ge (1-\varepsilon)\|f\|_2$.
- (d) Kesten's Theorem states that if G is nonamenable then there exists an r < 1 such that $||Pf||_2 < r||f||_2$. Use this theorem to prove that a simple random walk on a nonamenable group has positive random walk entropy.
- (3) For your own amusement (please do not submit). The lamplighter group LL(Z) is defined as follows. It is the set of pairs (A, z), where A is a finite subset of Z, and z is an element of Z. The group operation is (A, z) ⋅ (B, w) = (A △ (B+z), z+w).
 (a) Prove that LL(Z) is indeed a group.
 - (b) Prove that $LL(\mathbb{Z})$ is generated by $S = \{s_1, s_2, s_3\}$ where $s_1 = (\{0\}, 0), s_2 = (\emptyset, 1)$ and $s_3 = (\emptyset, -1)$.
 - (c) Prove that $LL(\mathbb{Z})$ is amenable.
 - (d) Find a random walk supported on $S = \{s_1, s_2, s_3\}$ (not necessarily with the uniform distribution) that has positive random walk entropy.