Ma140a, Homework 6
Due Friday, November 20^{Th}
Collaboration on homework is encouraged, but individually written solutions are required. Also, please name all collaborators and sources of information on each assignment; any such named source may be used.
(1) Let $G=(V, E)$ be an undirected, finite graph: V is finite, and $E \subset V \times V$ satisfies $(v, w) \in E$ iff $(w, v) \in E$. Denote by $d(v)=|\{w:(v, w) \in E\}|$ the degree of $v \in V$. Assume that G is connected.

Let $B \subseteq V$ be some non-empty subset of the vertices, which we will refer to as the boundary of the graph. Consider the Markov chain X_{1}, X_{2}, \ldots with transition matrix P on the state space V given by

$$
P(v, w)= \begin{cases}\frac{1}{d(v)} & \text { if } v \notin B \text { and }(v, w) \in E \\ 1 & \text { if } v \in B \text { and } w=v \\ 0 & \text { otherwise }\end{cases}
$$

That is, on $V \backslash B$ the Markov chain moves to adjacent vertices with equal probabilities, and it stops once it reaches B.
(a) Let $T_{B}=\min \left\{n>0: X_{n} \in B\right\}$ be the hitting time to B. Prove that it is almost surely finite.
(b) Prove that $f(v)=\mathbb{E}_{v}\left[T_{B}\right]$ is P-superharmonic.
(c) Prove that every function $f_{B}: B \rightarrow \mathbb{R}$ has a unique extension to a P-harmonic $f: V \rightarrow \mathbb{R}$. Hint: use T_{B}.
(d) Suppose B consistes of two vertices: $B=\left\{b_{0}, b_{1}\right\}$. Let $f_{B}: B \rightarrow \mathbb{R}$ be given by $f_{B}\left(b_{0}\right)=0$ and $f_{B}\left(b_{1}\right)=1$. Let $f: V \rightarrow \mathbb{R}$ be the unique extension of f_{B} to a P-harmonic function. Prove that $f(v)=\mathbb{P}_{v}\left[X_{T_{B}}=b_{1}\right]$. That is, that $f(v)$ is the probability that the Markov chain that starts at v hits the boundary at b_{1}, rather than at b_{0}.
(e) Let K, L be two positive integers. A gambler arrives at a casino with K dollars in her pocket. She plays until she runs out of money, or until she has $K+L$ dollars in her

[^0]pocket. At each game she either loses a dollar or gains a dollar, each with probability $1 / 2$. What is the probability that she leaves the casino with $K+L$ dollars?
(2) Let X be a random variable with $\mathbb{E}[X]=\mu$ and $\operatorname{Var}(X)=$ $\sigma^{2}<\infty$. Assume that x is non-atomic, i.e., $\mathbb{P}[X=x]=0$ for all $x \in \mathbb{R}$. Equivalently, the cumulative distribution function $F_{X}(x)=\mathbb{P}[X \leq x]$ continous. The median of X is the unique $m \in \mathbb{R}$ such that $F_{X}(m)=1 / 2$. Show that $|\mu-m| \leq \sigma$: the median is at most one standard deviation away from the mean.

[^0]: Omer Tamuz. Email: tamuz@caltech.edu.

