> Ma140a, Homework 3
> Due Friday, October $23^{\text {RD }}$

Collaboration on homework is encouraged, but individually written solutions are required. Also, please name all collaborators and sources of information on each assignment; any such named source may be used.
(1) Consider the sequence of independent random variables X_{1}, X_{2}, \ldots, where the cumulative distribution function of X_{n} is given by

$$
\mathbb{P}\left[X_{n} \leq x\right]= \begin{cases}2^{-n} \exp \left(2^{-n} x\right) & \text { if } x<0 \\ 2^{-n} & \text { if } 0 \leq x<0.01 \\ 1 & \text { if } 0.01 \leq x\end{cases}
$$

Consider a magical casino in which there is an infinite sequence of slot machines. A gambler starts out with 0 dollars in her account, and proceeds to gamble on each machine in turn. When she gambles on the $n^{\text {th }}$ machine her total yield is X_{n}. Hence her balance at time n is S_{n}, where $S_{0}=0$ and

$$
S_{n+1}=S_{n}+X_{n+1}=X_{1}+\cdots+X_{n+1}
$$

(a) Prove that if a random variable Y has a cumulative distribution function F, and if $F\left(x_{0}\right)-\lim _{x \not x_{0}} F(x)=p$, then $\mathbb{P}\left[Y=x_{0}\right]=p$. Conclude that $\mathbb{P}\left[X_{n}=0.01\right]=1-2^{-n}$.
(b) Show that $\mathbb{E}\left[S_{n}\right]<0$ for all $n>0$. Use the definition of expectation and its properties as given in the lecture notes (as opposed to theorems not taught in this course).
(c) Show that $\mathbb{P}\left[\lim S_{n}=\infty\right]=1$.
(2) Prove the Dominated Convergence Theorem using the Monotone Convergence Theorem.
(3) Prove that there exists a simply normal number: a real number $x \in[0,1]$ such that for any $d>1$ and $a \in\{0, \ldots, d-1\}$ the digit a occurs in the base d representation of x with asymptotic

[^0]frequency $1 / d$:
$\lim _{n} \frac{\text { number of times } a \text { occurs in the first } n \text { digits of } x}{n}=\frac{1}{d}$.

[^0]: Omer Tamuz. Email: tamuz@caltech.edu.

