MA140A, HOMEWORK 3 DUE FRIDAY, OCTOBER 23RD

Collaboration on homework is encouraged, but individually written solutions are required. Also, please name all collaborators and sources of information on each assignment; any such named source may be used.

(1) Consider the sequence of independent random variables X_1, X_2, \ldots , where the cumulative distribution function of X_n is given by

$$\mathbb{P}[X_n \le x] = \begin{cases} 2^{-n} \exp(2^{-n}x) & \text{if } x < 0\\ 2^{-n} & \text{if } 0 \le x < 0.01\\ 1 & \text{if } 0.01 \le x. \end{cases}$$

Consider a magical casino in which there is an infinite sequence of slot machines. A gambler starts out with 0 dollars in her account, and proceeds to gamble on each machine in turn. When she gambles on the n^{th} machine her total yield is X_n . Hence her balance at time n is S_n , where $S_0 = 0$ and

$$S_{n+1} = S_n + X_{n+1} = X_1 + \dots + X_{n+1}.$$

- (a) Prove that if a random variable Y has a cumulative distribution function F, and if $F(x_0) \lim_{x \nearrow x_0} F(x) = p$, then $\mathbb{P}[Y = x_0] = p$. Conclude that $\mathbb{P}[X_n = 0.01] = 1 2^{-n}$.
- (b) Show that $\mathbb{E}[S_n] < 0$ for all n > 0. Use the definition of expectation and its properties as given in the lecture notes (as opposed to theorems not taught in this course).
- (c) Show that $\mathbb{P}[\lim S_n = \infty] = 1$.
- (2) Prove the Dominated Convergence Theorem using the Monotone Convergence Theorem.
- (3) Prove that there exists a simply normal number: a real number $x \in [0, 1]$ such that for any d > 1 and $a \in \{0, \ldots, d-1\}$ the digit a occurs in the base d representation of x with asymptotic

Omer Tamuz. Email: tamuz@caltech.edu.

frequency 1/d:

\lim_{n}	number	of	times	a	occurs	in	the	first	n	digits	of x	_	1
	n								_	\overline{d}			