Ma140a, Homework 2
Due Friday, October $16^{\text {Th }}$
Collaboration on homework is encouraged, but individually written solutions are required. Also, please name all collaborators and sources of information on each assignment; any such named source may be used.

Recall that by the Prime Number Theorem, the probability that a number chosen uniformly from $\{1,2, \ldots, n\}$ is prime is of order $1 / \log n$. Formally, if Y_{n} is distributed uniformly on $\{1, \ldots, n\}$, and if \mathcal{P} denotes the set of primes, then

$$
\lim _{n} \frac{\mathbb{P}\left[Y_{n} \in \mathcal{P}\right]}{1 / \log n}=1
$$

Inspired by this result (due to Jacques Hadamard and Charles Jean de la Vallée Poussin), we will choose a random subset P of the natural numbers that will resemble the primes in the sense described above.

Let $\left(X_{3}, X_{4}, \ldots\right)$ be a sequence of independent random variables taking values in $\{0,1\}$, whose distributions are given by $\mathbb{P}\left[X_{n}=1\right]=p_{n}$ and $\mathbb{P}\left[X_{n}=0\right]=1-p_{n}$, with

$$
p_{n}=\frac{n+1}{\log (n+1)}-\frac{n}{\log n}
$$

Let P be a random variable taking values in the space of subsets of \mathbb{N} (which can be identified with $\{0,1\}^{\mathbb{N}}$), and given by

$$
P=\left\{n: X_{n}=1\right\} .
$$

Recall that the (unproven) Goldbach conjecture states that every even number greater than 2 is the sum of two primes. A weaker (and still unproven) conjecture is that there is some N so that every even $n \geq N$ is the sum of two primes. We will show that our random P will satisfy an analogue of this conjecture.
(1) Let Y_{1}, Y_{2}, \ldots be a sequence of random variables, each independent of P, and such that $\mathbb{P}\left[Y_{n}=i\right]=1 / n$ if $1 \leq i \leq n$ and $\mathbb{P}\left[Y_{n}=i\right]=0$ otherwise. Prove that

$$
\lim _{n} \frac{\mathbb{P}\left[Y_{n} \in P\right]}{1 / \log n}=1
$$

Omer Tamuz. Email: tamuz@caltech.edu.
(2) Let G_{n} be the event that n is not the sum of any two elements of P. Show that $\mathbb{P}\left[G_{n}\right]<n^{-2}$ for all n large enough. ${ }^{1}$
(3) Let G be the event that there exists some integer K such that every $n \geq K$ is the sum of two elements of P. Using the BorelCantelli Lemma, show that $\mathbb{P}[G]=1$.

[^0]
[^0]: ${ }^{1}$ In fact, $\mathbb{P}\left[G_{n}\right]$ decreases much more rapidly than that, but this bound will suffice for our needs.

