Ma140a, Homework 1 Due Friday, October 9^{TH}

Collaboration on homework is encouraged, but individually written solutions are required. Also, please name all collaborators and sources of information on each assignment; any such named source may be used.

- (1) Let *I* be a set, and let $\{\mathcal{F}_i\}_{i \in I}$ be a collection of sigma-algebras of subsets of Ω . Show that $\bigcap_{i \in I} \mathcal{F}_i$ is a sigma-algebra.
- (2) Let \mathcal{C} be a collection of subsets of Ω . Show that there exists a unique minimal (under inclusion) sigma-algebra $\mathcal{F} \supseteq \mathcal{C}$.
- (3) Given $n, k \in \mathbb{N} = \{1, 2, ...\}$, denote by $A_{n,k} = \{nz+k : z \in \mathbb{Z}\}$ the set of all integers that are equal to $k \mod n$. Let $\mathcal{P} = \{A_{n,k} : n, k \in \mathbb{N}\} \cup \{\emptyset\}$. Let \mathcal{A} be the collection of finite unions of elements of \mathcal{P} .
 - (a) Show that \mathcal{P} is a π -system and that \mathcal{A} is an algebra.
 - (b) Find a finitely additive probability measure on \mathcal{A} .
 - (c) Is \mathcal{A} a sigma-algebra?
 - (d) **Bonus.** Is your measure sigma-additive?
- (4) Let $\Omega = \mathbb{Z}$ and $\mathcal{F} = 2^{\mathbb{Z}}$ be the power set of \mathbb{Z} . A finitely additive probability measure $\mu \colon \mathcal{F} \to [0, 1]$ is *shift-invariant* if for all $A \in \mathcal{F}$ it holds that $\mu(A) = \mu(A+1)$, where

$$A + 1 = \{n + 1 : n \in A\}.$$

- (a) Prove that if μ is shift-invariant then it is not sigma-additive.
- (b) Bonus. Prove that there exists such a shift-invariant μ .

Omer Tamuz. Email: tamuz@caltech.edu.