
Derivatives and partial derivatives
Based on lecture notes by James McKernan

The derivative of a function represents the best linear approximation of that
function. In one variable, we are looking for the equation of a straight line. We
know a point on the line so that we only need to determine the slope.

Blackboard 1. Let f : R→ R be a function and let a ∈ R be a real number. f is
differentiable at a, with derivative λ ∈ R, if

lim
x→a

f(x)− f(a)

x− a
= λ.

To understand the definition of the derivative of a multi-variable function, it is
slightly better to recast (1):

Blackboard 2. Let f : R→ R be a function and let a ∈ R be a real number. f is
differentiable at a, with derivative λ ∈ R, if

lim
x→a

f(x)− f(a)− λ(x− a)

x− a
= 0.

We are now ready to give the definition of the derivative of a function of more
than one variable:

Blackboard 3. Let f : Rn → Rm be a function and let p ∈ Rn be a point. f is
differentiable at p, with derivative the m× n matrix A, if

lim
q→p

f(q)− f(p)−A−→pq
‖−→pq‖

= 0.

We will write Df(p) = A.

So how do we compute the derivative? We want to find the matrix A. Suppose
that

A =

(
a b
c d

)
Then

Aê1 =

(
a b
c d

)(
1
0

)
=

(
a
c

)
and

Aê2 =

(
a b
c d

)(
0
1

)
=

(
b
d

)
.

In general, given an m × n matrix A, we get the jth column of A, simply by
multiplying A by the column vector determined by êj .

So we want to know what happens if we approach p along the line determined by
êj . So we take −→pq = hêj , where h goes to zero. In other words, we take q = p+hêj .
Let’s assume that h > 0. So we consider the fraction

f(q)− f(p)−A(hêj)

‖−→pq‖
=
f(q)− f(p)−A(hêj)

h

=
f(q)− f(p)− hAêj

h

=
f(q)− f(p)

h
−Aêj .
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Taking the limit we get the jth column of A,

Aêj = lim
h→0

f(p+ hêj)− f(p)

h
.

Now f(p+ hêj)− f(p) is a column vector, whose entry in the ith row is

fi(p+êj)−fi(p) = fi(p1, p2, . . . , pj−1, pj+h, pj+1, . . . , pn)−fi(p1, p2, . . . , pj−1, pj , pj+1, . . . , pn).

and so for the expression on the right, in the ith row, we have

lim
h→0

fi(p+ hêj)− fi(p)
h

.

Blackboard 4. Let g : Rn → R be a function and let p ∈ Rn. The partial deriv-
ative of g at p = (p1, . . . , pn), with respect to xj is the limit

∂g

∂xj

∣∣∣∣
p

= lim
h→0

g(p1, p2, . . . , pj + h, . . . , pn)− g(p1, . . . , pn)

h
.

Example 5. Let g : R3 → R be the function

g(x, y, z) = x3y + x sin(xz).

Then

∂g

∂x

∣∣∣∣
(x,y,z)

= 3x2y + sin(xz) + xz cos(xz),

∂g

∂y

∣∣∣∣
(x,y,z)

= x3,

and

∂g

∂z

∣∣∣∣
(x,y,z)

= x2 cos(xz).

Putting all of this together, we get

Proposition 6. Let f : Rn → Rm be a function.
If f is differentiable at p, then Df(p) is the matrix whose (i, j) entry is the

partial derivative

∂fi
∂xj

∣∣∣∣
p

.

Example 7. Let f : A→ R2 be the function

f(x, y, z) = (x3y + x sin(xz), log xyz).

Here A ⊂ R3 is the first octant, the locus where x, y and z are all positive. Supposing
that f is differentiable at p, then the derivative is given by the matrix of partial
derivatives,

Df(p) =

(
3x2y + sin(xz) + xz cos(xz) x3 x2 cos(xz)

1
x

1
y

1
z

)
.
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Blackboard 8. Let f : Rn → R. be a differentiable function. Then the derivative
of f at p, Df(p) is a row vector, which is called the gradient of f , and is denoted

(∇f)
∣∣∣
p
,

(
∂f

∂x1

∣∣∣∣
p

, . . . ,
∂f

∂xn

∣∣∣∣
p

).

The point (x1, . . . , xn, xn+1) lies on the graph of f : Rn → R if and only if
xn+1 = f(x1, . . . , xn).

The point (x1, . . . , xn, xn+1) lies on the tangent hyperplane of f : Rn → R at
p = (p1, . . . , pn) if and only if

xn+1 = f(p1, . . . , pn) + (∇f)
∣∣
p
· (x1 − p1, x2 − p2, . . . , xn − pn).

In other words, the vector(
∂f

∂x1
(p),

∂f

∂x2
(p), . . . ,

∂f

∂xn
(p),−1

)
,

is a normal vector to the tangent hyperplane and of course the point (p1, . . . , pn, f(p1, . . . , pn))
is on the tangent hyperplane.

Example 9. Let
D = { (x, y) ∈ R2 |x2 + y2 < 1 },

the open ball of radius 1, centred at the origin.
Let f : R2 → R be the function given by

f(x, y) =
√

1− x2 − y2.
Then

∂f

∂x
=

−2x/2√
1− x2 − y2

= − x√
1− x2 − y2

,

and so by symmetry,
∂f

∂y
= − y√

1− x2 − y2
,

At the point (a, b), the gradient is

(∇f)
∣∣
(a,b)

=
−1√

1− a2 − b2
(a, b).

So the equation for the tangent plane is

z = f(a, b)− 1√
1− a2 − b2

(a(x− a) + b(y − b)).

For example, if (a, b) = (0, 0), then the tangent plane is

z = 1,

as expected.


