LiMITs
BASED ON LECTURE NOTES BY JAMES MCKERNAN

Blackboard 1. Let q1,qz2, ... be a sequence of points in R™. We say that lim,, g, =
p if for all € > 0 there exists an m € N such that |gnp| < € for all n > m.

Blackboard 2. Let p € R™ be a point. The open ball of radius ¢ > 0 around
p is the set

Be(p) ={a € R"|[[pg] < }.
The closed ball of radius ¢ > 0 about p is the set

{Q e R™|[|pdl| <e}.
Blackboard 3. A subset A C R™ is called open if for every p € A there is an
€ > 0 such that the open ball of radius € about p is entirely contained in A,
Be(p) C A.

We say that C' is closed if the complement of C is open.

Put differently, an open set is a union of open balls. Open balls are open and
closed balls are closed. [0, 1) is neither open nor closed.

Blackboard 4. Let A C R™. We say that p € R" is an accumulation point of
A if for every € > 0 the intersection

Be(p) N (S\ {p}) #0.

In other words, if for every € > 0 there is a point in A that is different than p
and is less than e away from p.
This can also be defined as follows:

Blackboard 5. p € R" is an accumulation point of A if there exists a q1,qz2, - - -
with every q, € A\ {p} such that lim,, g, = p.

Example 6. 0 is an accumulation point of
1
{ - [neN} CR.

Lemma 7. A subset S C R™ is closed if and only if S contains all of its accumu-
lation points.

Example 8. R"™\ {0} is open. One can see this directly from the definition or from
the fact that the complement {0} is closed.

Blackboard 9. Let A C R™ and let p € R™ be an accumulation point of A. Suppose
that f: A — R™ is a function.
We say that f approaches x as q approaches p and write

li —
lim f(q) = =,

if for every e > 0 there exists a 6 > 0 such that for all ¢ € Bs(p) N A, q # p,
f(q) € Be(x). In this case we call x the limit of f at p.

It might help to understand the notion of a limit in terms of a game played
between two people. Let’s call the first player Alice and the second player Bob.
Alice wants to prove to Bob that x is the limit of f at ¢ approaches p and Bob is
not convinced.



So Bob gets to choose € > 0. It is now up to Alice to choose § > 0. Then Bob
gets to choose a g € Bs(p) N A, q # p. Alice wins if f(q) € B.(z), and otherwise
Bob wins.

If indeed lim,_,, f(¢) = = then no matter what Bob does, Alice can win. Other-
wise, no matter what Alice does, Bob can win.

This can be defined alternatively by

Blackboard 10.

lim f(q) ==
a—p
if for every sequence qi,qa, ..., with g, € A setminus{p} such that lim, g, = p it

holds that lim,, f(g,) = .

Example 11. Let f: R — R be given by f(z) = 2*. Show that lim,—¢ f(g) = 0.
Choose € > 0, and let 6 = \/e. Then for every q € (—4,9) \ {0}
@) 0= <& =c

Proposition 12. Let f: A — R™ and g: A — R™. be two functions. Let A € R be
a scalar. If p is an accumulation point of A and

lim f(¢) =2«  and  limg(q) =y,
q—p q—p

then

(1) limg—p(f +9)(q) =2 +y, and

(2) Timgop(r- @) = -2
Now suppose that m = 1.

(3) limgp(f - 9)(q) =z -y, and

(4) ify #0, then limg,(f/9)(q) = z/y.
Proof. We just prove (1). Suppose that € > 0. As z and y are limits, we may find
01 and 02 such that, if ||g — p|| < 1 and ¢ € A\ {p}, then || f(¢) — z| < €¢/2 and if
llg = pll < b2 and g € A\ {p}, then [lg(q) —y[ < €/2.

Let § = min(d1,d2). If ||¢ —p|| < and ¢ € A\ {p}, then
1(f +9)(a) = (@ +y)l =(fla) — =) + (9(a) = )]
<I(f(@) =)l +lI{g(a) = vl
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where we applied the triangle inequality to get from the second line to the third
line. This is (1). (2-4) have similar proofs. O

Blackboard 13. Let A C R™ and let p € A be an accumulation point. If f: A —
R™ s a function, then we say that f is continuous at p, if

lim = .

lim f(q) = f(p)

We say that f is continuous, if it is continuous at every point of A that is also an
accumulation point.

Theorem 14. If f: R™ — R. is a polynomial function, then f is continuous.

A similar result holds if f(z) = P(z)/Q(z) is a rational function (a quotient of
two polynomials). Its domain is taken to be all the points where ) doesn’t vanish.



Example 15. f: R?2 — R. given by f(x,y) = 2% +y? is continuous.
Bob likes the following result:

Proposition 16. Let A C R™ and let B C R™. Let f: A— B and g: B — R’
Suppose that p is an accumulation point of A, x is an accumulation point of B
and

lim f(q) == and lim g(z) = 2.

q—p y—x

Then

lim[go f](q) = =.

Proof. Let € > 0. We may find § > 0 such that if ||z — y|| < ¢, and y € B\ {z},
then ||g(y) — z|]| < e. Given § > 0 we may find n > 0 such that if ||¢ — p|| < n and

q € A\ {p}, then |f(q) — z|| < n. But then if ||¢ — p|| < n and ¢ € A\ {p}, then
y= f(g) € B and ||y — z|| < 4, so that

llg o f1(q) — 2l = llg(f(q)) — =ll

= [lg(y) — ||
< €. O

Example 17. Does
. xy
lim ———
(,9)—(0,0) % + y?
exist? The answer is no.
To show that the answer is no, we suppose that the limit exists. Suppose we
consider restricting to the x-axis. Let

f: R — R?,

be given by t — (t,0). As f is continuous, if we compose we must get a function
with a limit,
0
lim —— =1im 0 = 0.
t=0t24+0 t—0
Now suppose that we restrict to the line y = x. Now consider the function

f: R — R?

be given by t — (t,t). As f is continuous, if we compose we must get a function
with a limit,
t2 11

tlgr(l)tQ—i-t2 :tg%i T
The problem is that the limit along two different lines is different. So the original
limit cannot exist.

Example 18. Does the limait
. z?
lim ———,
(z,y)—(0,0) T2 + 32
exist? Let us use polar coordinates. Note that

x3 73 cos® 6

5 5 = 5 = rcos> 0.
e +y T




So we guess the limit is zero.
3

lim |x7| = lim |r cos® 6|
(@y) =00 ® +y> -0
< lim |r| = 0.
r—0



