Limits

Based on lecture notes by James McKernan

Blackboard 1. Let q_{1}, q_{2}, \ldots be a sequence of points in \mathbb{R}^{n}. We say that $\lim _{n} q_{n}=$ p if for all $\epsilon>0$ there exists an $m \in \mathbb{N}$ such that $\left|\overrightarrow{q_{n} p}\right|<\epsilon$ for all $n \geq m$.
Blackboard 2. Let $p \in \mathbb{R}^{n}$ be a point. The open ball of radius $\epsilon>0$ around p is the set

$$
B_{\epsilon}(p)=\left\{q \in \mathbb{R}^{n} \mid\|\vec{p} \vec{q}\|<\epsilon\right\}
$$

The closed ball of radius $\epsilon>0$ about p is the set

$$
\left\{Q \in \mathbb{R}^{n} \mid\|\vec{p}\| \| \leq \epsilon\right\}
$$

Blackboard 3. A subset $A \subset \mathbb{R}^{n}$ is called open if for every $p \in A$ there is an $\epsilon>0$ such that the open ball of radius ϵ about p is entirely contained in A,

$$
B_{\epsilon}(p) \subset A
$$

We say that C is closed if the complement of C is open.
Put differently, an open set is a union of open balls. Open balls are open and closed balls are closed. $[0,1)$ is neither open nor closed.

Blackboard 4. Let $A \subset \mathbb{R}^{n}$. We say that $p \in \mathbb{R}^{n}$ is an accumulation point of A if for every $\epsilon>0$ the intersection

$$
B_{\epsilon}(p) \cap(S \backslash\{p\}) \neq \emptyset .
$$

In other words, if for every $\epsilon>0$ there is a point in A that is different than p and is less than ϵ away from p.

This can also be defined as follows:
Blackboard 5. $p \in \mathbb{R}^{n}$ is an accumulation point of A if there exists a q_{1}, q_{2}, \ldots with every $q_{n} \in A \backslash\{p\}$ such that $\lim _{n} q_{n}=p$.

Example 6. 0 is an accumulation point of

$$
\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\} \subset \mathbb{R}
$$

Lemma 7. A subset $S \subset \mathbb{R}^{n}$ is closed if and only if S contains all of its accumulation points.

Example 8. $\mathbb{R}^{n} \backslash\{0\}$ is open. One can see this directly from the definition or from the fact that the complement $\{0\}$ is closed.

Blackboard 9. Let $A \subset \mathbb{R}^{n}$ and let $p \in \mathbb{R}^{n}$ be an accumulation point of A. Suppose that $f: A \rightarrow \mathbb{R}^{m}$ is a function.

We say that f approaches x as q approaches p and write

$$
\lim _{q \rightarrow p} f(q)=x
$$

if for every $\epsilon>0$ there exists a $\delta>0$ such that for all $q \in B_{\delta}(p) \cap A, q \neq p$, $f(q) \in B_{\epsilon}(x)$. In this case we call x the limit of f at p.

It might help to understand the notion of a limit in terms of a game played between two people. Let's call the first player Alice and the second player Bob. Alice wants to prove to Bob that x is the limit of f at q approaches p and Bob is not convinced.

So Bob gets to choose $\epsilon>0$. It is now up to Alice to choose $\delta>0$. Then Bob gets to choose a $q \in B_{\delta}(p) \cap A, q \neq p$. Alice wins if $f(q) \in B_{\epsilon}(x)$, and otherwise Bob wins.

If indeed $\lim _{q \rightarrow p} f(q)=x$ then no matter what Bob does, Alice can win. Otherwise, no matter what Alice does, Bob can win.

This can be defined alternatively by

Blackboard 10.

$$
\lim _{q \rightarrow p} f(q)=x
$$

if for every sequence q_{1}, q_{2}, \ldots, with $q_{n} \in A$ setminus $\{p\}$ such that $\lim _{n} q_{n}=p$ it holds that $\lim _{n} f\left(q_{n}\right)=x$.
Example 11. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x)=x^{2}$. Show that $\lim _{q \rightarrow 0} f(q)=0$.
Choose $\epsilon>0$, and let $\delta=\sqrt{\epsilon}$. Then for every $q \in(-\delta, \delta) \backslash\{0\}$

$$
|f(q)-0|=q^{2}<\delta^{2}=\epsilon
$$

Proposition 12. Let $f: A \rightarrow \mathbb{R}^{m}$ and $g: A \rightarrow \mathbb{R}^{m}$. be two functions. Let $\lambda \in \mathbb{R}$ be a scalar. If p is an accumulation point of A and

$$
\lim _{q \rightarrow p} f(q)=x \quad \text { and } \quad \lim _{q \rightarrow p} g(q)=y
$$

then
(1) $\lim _{q \rightarrow p}(f+g)(q)=x+y$, and
(2) $\lim _{q \rightarrow p}(\lambda \cdot f)(q)=\lambda \cdot x$.

Now suppose that $m=1$.
(3) $\lim _{q \rightarrow p}(f \cdot g)(q)=x \cdot y$, and
(4) if $y \neq 0$, then $\lim _{Q \rightarrow p}(f / g)(q)=x / y$.

Proof. We just prove (1). Suppose that $\epsilon>0$. As x and y are limits, we may find δ_{1} and δ_{2} such that, if $\|q-p\|<\delta_{1}$ and $q \in A \backslash\{p\}$, then $\|f(q)-x\|<\epsilon / 2$ and if $\|q-p\|<\delta_{2}$ and $q \in A \backslash\{p\}$, then $\|g(q)-y\|<\epsilon / 2$.

Let $\delta=\min \left(\delta_{1}, \delta_{2}\right)$. If $\|q-p\|<\delta$ and $q \in A \backslash\{p\}$, then

$$
\begin{aligned}
\|(f+g)(q)-(x+y)\| & =\|(f(q)-x)+(g(q)-y)\| \\
& \leq\|(f(q)-x)\|+\|(g(q)-y)\| \\
& \leq \frac{\epsilon}{2}+\frac{\epsilon}{2} \\
& =\epsilon
\end{aligned}
$$

where we applied the triangle inequality to get from the second line to the third line. This is (1). (2-4) have similar proofs.
Blackboard 13. Let $A \subset \mathbb{R}^{n}$ and let $p \in A$ be an accumulation point. If $f: A \rightarrow$ \mathbb{R}^{m} is a function, then we say that f is continuous at p, if

$$
\lim _{q \rightarrow p} f(q)=f(p)
$$

We say that f is continuous, if it is continuous at every point of A that is also an accumulation point.
Theorem 14. If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$. is a polynomial function, then f is continuous.
A similar result holds if $f(x)=P(x) / Q(x)$ is a rational function (a quotient of two polynomials). Its domain is taken to be all the points where Q doesn't vanish.

Example 15. $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$. given by $f(x, y)=x^{2}+y^{2}$ is continuous.
Bob likes the following result:
Proposition 16. Let $A \subset \mathbb{R}^{n}$ and let $B \subset \mathbb{R}^{m}$. Let $f: A \rightarrow B$ and $g: B \rightarrow \mathbb{R}^{l}$.
Suppose that p is an accumulation point of A, x is an accumulation point of B and

$$
\lim _{q \rightarrow p} f(q)=x \quad \text { and } \quad \lim _{y \rightarrow x} g(x)=z
$$

Then

$$
\lim _{q \rightarrow p}[g \circ f](q)=z
$$

Proof. Let $\epsilon>0$. We may find $\delta>0$ such that if $\|x-y\|<\delta$, and $y \in B \backslash\{x\}$, then $\|g(y)-z\|<\epsilon$. Given $\delta>0$ we may find $\eta>0$ such that if $\|q-p\|<\eta$ and $q \in A \backslash\{p\}$, then $\mid f(q)-x \|<\eta$. But then if $\|q-p\|<\eta$ and $q \in A \backslash\{p\}$, then $y=f(q) \in B$ and $\|y-x\|<\delta$, so that

$$
\begin{aligned}
\|[g \circ f](q)-z\| & =\|g(f(q))-z\| \\
& =\|g(y)-z\| \\
& <\epsilon .
\end{aligned}
$$

Example 17. Does

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}
$$

exist? The answer is no.
To show that the answer is no, we suppose that the limit exists. Suppose we consider restricting to the x-axis. Let

$$
f: \mathbb{R} \rightarrow \mathbb{R}^{2}
$$

be given by $t \mapsto(t, 0)$. As f is continuous, if we compose we must get a function with a limit,

$$
\lim _{t \rightarrow 0} \frac{0}{t^{2}+0}=\lim _{t \rightarrow 0} 0=0
$$

Now suppose that we restrict to the line $y=x$. Now consider the function

$$
f: \mathbb{R} \rightarrow \mathbb{R}^{2}
$$

be given by $t \mapsto(t, t)$. As f is continuous, if we compose we must get a function with a limit,

$$
\lim _{t \rightarrow 0} \frac{t^{2}}{t^{2}+t^{2}}=\lim _{t \rightarrow 0} \frac{1}{2}=\frac{1}{2}
$$

The problem is that the limit along two different lines is different. So the original limit cannot exist.

Example 18. Does the limit

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}}{x^{2}+y^{2}}
$$

exist? Let us use polar coordinates. Note that

$$
\frac{x^{3}}{x^{2}+y^{2}}=\frac{r^{3} \cos ^{3} \theta}{r^{2}}=r \cos ^{3} \theta
$$

So we guess the limit is zero.

$$
\begin{aligned}
\lim _{(x, y) \rightarrow(0,0)}\left|\frac{x^{3}}{x^{2}+y^{2}}\right| & =\lim _{r \rightarrow 0}\left|r \cos ^{3} \theta\right| \\
& \leq \lim _{r \rightarrow 0}|r|=0
\end{aligned}
$$

