LIMITS

BASED ON LECTURE NOTES BY JAMES MCKERNAN

Blackboard 1. Let q_1, q_2, \ldots be a sequence of points in \mathbb{R}^n . We say that $\lim_n q_n = p$ if for all $\epsilon > 0$ there exists an $m \in \mathbb{N}$ such that $|\overrightarrow{q_n p}| < \epsilon$ for all $n \ge m$.

Blackboard 2. Let $p \in \mathbb{R}^n$ be a point. The open ball of radius $\epsilon > 0$ around p is the set

$$B_{\epsilon}(p) = \{ q \in \mathbb{R}^n \mid \|\overrightarrow{pq}\| < \epsilon \}.$$

The closed ball of radius $\epsilon > 0$ about p is the set

$$\{Q \in \mathbb{R}^n \mid \|\overrightarrow{pq}\| \le \epsilon\}.$$

Blackboard 3. A subset $A \subset \mathbb{R}^n$ is called **open** if for every $p \in A$ there is an $\epsilon > 0$ such that the open ball of radius ϵ about p is entirely contained in A,

$$B_{\epsilon}(p) \subset A.$$

We say that C is **closed** if the complement of C is open.

Put differently, an open set is a union of open balls. Open balls are open and closed balls are closed. [0, 1) is neither open nor closed.

Blackboard 4. Let $A \subset \mathbb{R}^n$. We say that $p \in \mathbb{R}^n$ is an accumulation point of A if for every $\epsilon > 0$ the intersection

$$B_{\epsilon}(p) \cap (S \setminus \{p\}) \neq \emptyset.$$

In other words, if for every $\epsilon > 0$ there is a point in A that is different than p and is less than ϵ away from p.

This can also be defined as follows:

Blackboard 5. $p \in \mathbb{R}^n$ is an accumulation point of A if there exists a q_1, q_2, \ldots with every $q_n \in A \setminus \{p\}$ such that $\lim_n q_n = p$.

Example 6. 0 is an accumulation point of

$$\left\{ \frac{1}{n} \mid n \in \mathbb{N} \right\} \subset \mathbb{R}.$$

Lemma 7. A subset $S \subset \mathbb{R}^n$ is closed if and only if S contains all of its accumulation points.

Example 8. $\mathbb{R}^n \setminus \{0\}$ is open. One can see this directly from the definition or from the fact that the complement $\{0\}$ is closed.

Blackboard 9. Let $A \subset \mathbb{R}^n$ and let $p \in \mathbb{R}^n$ be an accumulation point of A. Suppose that $f: A \to \mathbb{R}^m$ is a function.

We say that f approaches x as q approaches p and write

$$\lim_{q \to p} f(q) = x,$$

if for every $\epsilon > 0$ there exists a $\delta > 0$ such that for all $q \in B_{\delta}(p) \cap A$, $q \neq p$, $f(q) \in B_{\epsilon}(x)$. In this case we call x the **limit** of f at p.

It might help to understand the notion of a limit in terms of a game played between two people. Let's call the first player Alice and the second player Bob. Alice wants to prove to Bob that x is the limit of f at q approaches p and Bob is not convinced.

So Bob gets to choose $\epsilon > 0$. It is now up to Alice to choose $\delta > 0$. Then Bob gets to choose a $q \in B_{\delta}(p) \cap A$, $q \neq p$. Alice wins if $f(q) \in B_{\epsilon}(x)$, and otherwise Bob wins.

If indeed $\lim_{q\to p} f(q) = x$ then no matter what Bob does, Alice can win. Otherwise, no matter what Alice does, Bob can win.

This can be defined alternatively by

Blackboard 10.

$$\lim_{q \to p} f(q) = x$$

if for every sequence q_1, q_2, \ldots , with $q_n \in A$ set $\{p\}$ such that $\lim_n q_n = p$ it holds that $\lim_n f(q_n) = x$.

Example 11. Let $f : \mathbb{R} \to \mathbb{R}$ be given by $f(x) = x^2$. Show that $\lim_{q\to 0} f(q) = 0$. Choose $\epsilon > 0$, and let $\delta = \sqrt{\epsilon}$. Then for every $q \in (-\delta, \delta) \setminus \{0\}$

$$|f(q) - 0| = q^2 < \delta^2 = \epsilon.$$

Proposition 12. Let $f: A \to \mathbb{R}^m$ and $g: A \to \mathbb{R}^m$. be two functions. Let $\lambda \in \mathbb{R}$ be a scalar. If p is an accumulation point of A and

$$\lim_{q \to p} f(q) = x \qquad and \qquad \lim_{q \to p} g(q) = y,$$

then

(1) $\lim_{q \to p} (f+g)(q) = x+y$, and

(2) $\lim_{q \to p} (\lambda \cdot f)(q) = \lambda \cdot x.$

Now suppose that m = 1.

- (3) $\lim_{q \to p} (f \cdot g)(q) = x \cdot y$, and
- (4) if $y \neq 0$, then $\lim_{Q \to p} (f/g)(q) = x/y$.

Proof. We just prove (1). Suppose that $\epsilon > 0$. As x and y are limits, we may find δ_1 and δ_2 such that, if $||q - p|| < \delta_1$ and $q \in A \setminus \{p\}$, then $||f(q) - x|| < \epsilon/2$ and if $||q - p|| < \delta_2$ and $q \in A \setminus \{p\}$, then $||g(q) - y|| < \epsilon/2$.

Let $\delta = \min(\delta_1, \delta_2)$. If $||q - p|| < \delta$ and $q \in A \setminus \{p\}$, then

$$\begin{split} \|(f+g)(q) - (x+y)\| &= \|(f(q) - x) + (g(q) - y)\| \\ &\leq \|(f(q) - x)\| + \|(g(q) - y)\| \\ &\leq \frac{\epsilon}{2} + \frac{\epsilon}{2} \\ &= \epsilon, \end{split}$$

where we applied the triangle inequality to get from the second line to the third line. This is (1). (2-4) have similar proofs. \Box

Blackboard 13. Let $A \subset \mathbb{R}^n$ and let $p \in A$ be an accumulation point. If $f: A \to \mathbb{R}^m$ is a function, then we say that f is continuous at p, if

$$\lim_{q\to p}f(q)=f(p)$$

We say that f is continuous, if it is continuous at every point of A that is also an accumulation point.

Theorem 14. If $f : \mathbb{R}^n \to \mathbb{R}$. is a polynomial function, then f is continuous.

A similar result holds if f(x) = P(x)/Q(x) is a rational function (a quotient of two polynomials). Its domain is taken to be all the points where Q doesn't vanish.

Example 15. $f: \mathbb{R}^2 \to \mathbb{R}$. given by $f(x, y) = x^2 + y^2$ is continuous.

Bob likes the following result:

Proposition 16. Let $A \subset \mathbb{R}^n$ and let $B \subset \mathbb{R}^m$. Let $f: A \to B$ and $g: B \to \mathbb{R}^l$.

Suppose that p is an accumulation point of A, x is an accumulation point of B and

$$\lim_{q \to p} f(q) = x \quad and \quad \lim_{y \to x} g(x) = z.$$

Then

$$\lim_{q \to p} [g \circ f](q) = z.$$

Proof. Let $\epsilon > 0$. We may find $\delta > 0$ such that if $||x - y|| < \delta$, and $y \in B \setminus \{x\}$, then $||g(y) - z|| < \epsilon$. Given $\delta > 0$ we may find $\eta > 0$ such that if $||q - p|| < \eta$ and $q \in A \setminus \{p\}$, then $|f(q) - x|| < \eta$. But then if $||q - p|| < \eta$ and $q \in A \setminus \{p\}$, then $y = f(q) \in B$ and $||y - x|| < \delta$, so that

$$\begin{aligned} \|[g \circ f](q) - z\| &= \|g(f(q)) - z\| \\ &= \|g(y) - z\| \\ &< \epsilon. \end{aligned}$$

Example 17. Does

$$\lim_{(x,y)\to(0,0)} \frac{xy}{x^2 + y^2}$$

exist? The answer is no.

To show that the answer is no, we suppose that the limit exists. Suppose we consider restricting to the x-axis. Let

$$f: \mathbb{R} \to \mathbb{R}^2,$$

be given by $t \mapsto (t,0)$. As f is continuous, if we compose we must get a function with a limit,

$$\lim_{t \to 0} \frac{0}{t^2 + 0} = \lim_{t \to 0} 0 = 0.$$

Now suppose that we restrict to the line y = x. Now consider the function

$$f: \mathbb{R} \to \mathbb{R}^2$$

be given by $t \mapsto (t,t)$. As f is continuous, if we compose we must get a function with a limit,

$$\lim_{t \to 0} \frac{t^2}{t^2 + t^2} = \lim_{t \to 0} \frac{1}{2} = \frac{1}{2}.$$

The problem is that the limit along two different lines is different. So the original limit cannot exist.

Example 18. Does the limit

$$\lim_{(x,y)\to(0,0)}\frac{x^3}{x^2+y^2},$$

exist? Let us use polar coordinates. Note that

$$\frac{x^3}{x^2 + y^2} = \frac{r^3 \cos^3 \theta}{r^2} = r \cos^3 \theta.$$

So we guess the limit is zero.

$$\lim_{(x,y)\to(0,0)} |\frac{x^3}{x^2 + y^2}| = \lim_{r\to 0} |r\cos^3\theta| \le \lim_{r\to 0} |r| = 0.$$