
Limits
Based on lecture notes by James McKernan

Blackboard 1. Let q1, q2, . . . be a sequence of points in Rn. We say that limn qn =
p if for all ε > 0 there exists an m ∈ N such that |−→qnp| < ε for all n ≥ m.

Blackboard 2. Let p ∈ Rn be a point. The open ball of radius ε > 0 around
p is the set

Bε(p) = { q ∈ Rn | ‖−→pq‖ < ε }.
The closed ball of radius ε > 0 about p is the set

{Q ∈ Rn | ‖−→pq‖ ≤ ε }.

Blackboard 3. A subset A ⊂ Rn is called open if for every p ∈ A there is an
ε > 0 such that the open ball of radius ε about p is entirely contained in A,

Bε(p) ⊂ A.
We say that C is closed if the complement of C is open.

Put differently, an open set is a union of open balls. Open balls are open and
closed balls are closed. [0, 1) is neither open nor closed.

Blackboard 4. Let A ⊂ Rn. We say that p ∈ Rn is an accumulation point of
A if for every ε > 0 the intersection

Bε(p) ∩ (S \ {p}) 6= ∅.

In other words, if for every ε > 0 there is a point in A that is different than p
and is less than ε away from p.

This can also be defined as follows:

Blackboard 5. p ∈ Rn is an accumulation point of A if there exists a q1, q2, . . .
with every qn ∈ A \ {p} such that limn qn = p.

Example 6. 0 is an accumulation point of

{ 1

n
|n ∈ N } ⊂ R.

Lemma 7. A subset S ⊂ Rn is closed if and only if S contains all of its accumu-
lation points.

Example 8. Rn \{0} is open. One can see this directly from the definition or from
the fact that the complement {0} is closed.

Blackboard 9. Let A ⊂ Rn and let p ∈ Rn be an accumulation point of A. Suppose
that f : A→ Rm is a function.

We say that f approaches x as q approaches p and write

lim
q→p

f(q) = x,

if for every ε > 0 there exists a δ > 0 such that for all q ∈ Bδ(p) ∩ A, q 6= p,
f(q) ∈ Bε(x). In this case we call x the limit of f at p.

It might help to understand the notion of a limit in terms of a game played
between two people. Let’s call the first player Alice and the second player Bob.
Alice wants to prove to Bob that x is the limit of f at q approaches p and Bob is
not convinced.
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So Bob gets to choose ε > 0. It is now up to Alice to choose δ > 0. Then Bob
gets to choose a q ∈ Bδ(p) ∩ A, q 6= p. Alice wins if f(q) ∈ Bε(x), and otherwise
Bob wins.

If indeed limq→p f(q) = x then no matter what Bob does, Alice can win. Other-
wise, no matter what Alice does, Bob can win.

This can be defined alternatively by

Blackboard 10.
lim
q→p

f(q) = x

if for every sequence q1, q2, . . ., with qn ∈ A setminus{p} such that limn qn = p it
holds that limn f(qn) = x.

Example 11. Let f : R→ R be given by f(x) = x2. Show that limq→0 f(q) = 0.
Choose ε > 0, and let δ =

√
ε. Then for every q ∈ (−δ, δ) \ {0}
|f(q)− 0| = q2 < δ2 = ε.

Proposition 12. Let f : A→ Rm and g : A→ Rm. be two functions. Let λ ∈ R be
a scalar. If p is an accumulation point of A and

lim
q→p

f(q) = x and lim
q→p

g(q) = y,

then

(1) limq→p(f + g)(q) = x+ y, and
(2) limq→p(λ · f)(q) = λ · x.

Now suppose that m = 1.

(3) limq→p(f · g)(q) = x · y, and
(4) if y 6= 0, then limQ→p(f/g)(q) = x/y.

Proof. We just prove (1). Suppose that ε > 0. As x and y are limits, we may find
δ1 and δ2 such that, if ‖q − p‖ < δ1 and q ∈ A \ {p}, then ‖f(q)− x‖ < ε/2 and if
‖q − p‖ < δ2 and q ∈ A \ {p}, then ‖g(q)− y‖ < ε/2.

Let δ = min(δ1, δ2). If ‖q − p‖ < δ and q ∈ A \ {p}, then

‖(f + g)(q)− (x+ y)‖ = ‖(f(q)− x) + (g(q)− y)‖
≤ ‖(f(q)− x)‖+ ‖(g(q)− y)‖

≤ ε

2
+
ε

2
= ε,

where we applied the triangle inequality to get from the second line to the third
line. This is (1). (2-4) have similar proofs. �

Blackboard 13. Let A ⊂ Rn and let p ∈ A be an accumulation point. If f : A→
Rm is a function, then we say that f is continuous at p, if

lim
q→p

f(q) = f(p).

We say that f is continuous, if it is continuous at every point of A that is also an
accumulation point.

Theorem 14. If f : Rn → R. is a polynomial function, then f is continuous.

A similar result holds if f(x) = P (x)/Q(x) is a rational function (a quotient of
two polynomials). Its domain is taken to be all the points where Q doesn’t vanish.
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Example 15. f : R2 → R. given by f(x, y) = x2 + y2 is continuous.

Bob likes the following result:

Proposition 16. Let A ⊂ Rn and let B ⊂ Rm. Let f : A→ B and g : B → Rl.
Suppose that p is an accumulation point of A, x is an accumulation point of B

and

lim
q→p

f(q) = x and lim
y→x

g(x) = z.

Then

lim
q→p

[g ◦ f ](q) = z.

Proof. Let ε > 0. We may find δ > 0 such that if ‖x − y‖ < δ, and y ∈ B \ {x},
then ‖g(y)− z‖ < ε. Given δ > 0 we may find η > 0 such that if ‖q − p‖ < η and
q ∈ A \ {p}, then |f(q) − x‖ < η. But then if ‖q − p‖ < η and q ∈ A \ {p}, then
y = f(q) ∈ B and ‖y − x‖ < δ, so that

‖[g ◦ f ](q)− z‖ = ‖g(f(q))− z‖
= ‖g(y)− z‖
< ε. �

Example 17. Does

lim
(x,y)→(0,0)

xy

x2 + y2

exist? The answer is no.
To show that the answer is no, we suppose that the limit exists. Suppose we

consider restricting to the x-axis. Let

f : R→ R2,

be given by t 7→ (t, 0). As f is continuous, if we compose we must get a function
with a limit,

lim
t→0

0

t2 + 0
= lim
t→0

0 = 0.

Now suppose that we restrict to the line y = x. Now consider the function

f : R→ R2,

be given by t 7→ (t, t). As f is continuous, if we compose we must get a function
with a limit,

lim
t→0

t2

t2 + t2
= lim
t→0

1

2
=

1

2
.

The problem is that the limit along two different lines is different. So the original
limit cannot exist.

Example 18. Does the limit

lim
(x,y)→(0,0)

x3

x2 + y2
,

exist? Let us use polar coordinates. Note that

x3

x2 + y2
=
r3 cos3 θ

r2
= r cos3 θ.
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So we guess the limit is zero.

lim
(x,y)→(0,0)

| x3

x2 + y2
| = lim

r→0
|r cos3 θ|

≤ lim
r→0
|r| = 0.


