\mathbb{R}^n , linear transformations and matrices Based on lecture notes by James McKernan

Blackboard 1. A vector in \mathbb{R}^n is an n-tuple $\vec{v} = (v_1, v_2, \dots, v_n)$. Given $\vec{v}, \vec{w} \in \mathbb{R}^n$, their sum is

$$\vec{v} + \vec{w} = (v_1 + w_1, v_2 + w_2, \dots, v_n + w_n),$$

their dot product is

$$\vec{v}\cdot\vec{w} = v_1w_1 + v_2w_2 + \ldots + v_nw_n,$$

and for $\lambda \in \mathbb{R}$

$$\lambda \vec{v} = (\lambda v_1, \lambda v_2, \dots, \lambda v_n).$$

The norm of \vec{v} is

$$\|\vec{v}\| = \sqrt{\vec{v} \cdot \vec{v}}.$$

Blackboard 2. The standard basis of \mathbb{R}^n is the set of vectors,

$$\hat{e}_1 = (1, 0, \dots, 0), \quad \hat{e}_2 = (0, 1, \dots, 0), \quad \dots, \hat{e}_n = (0, 0, \dots, 1)$$

If $\vec{v} = (v_1, v_2, \dots, v_n)$, then

$$\vec{v} = v_1 \hat{e}_1 + v_2 \hat{e}_2 + \ldots + v_n \hat{e}_n.$$

Let's adopt the (somewhat ad hoc) convention that \vec{v} and \vec{w} are parallel if and only if either \vec{v} is a scalar multiple of \vec{w} , or vice-versa. Note that if both \vec{v} and \vec{w} are non-zero vectors, then \vec{v} is a scalar multiple of \vec{w} if and only if \vec{w} is a scalar multiple of \vec{v} .

Theorem 3 (Cauchy-Schwarz-Bunyakowski). If $\vec{v}, \vec{w} \in \mathbb{R}^n$ then

$$|\vec{v} \cdot \vec{w}| \le \|v\| \|w\|,$$

with equality iff \vec{v} is parallel to \vec{w} .

Proof. If either \vec{v} or \vec{w} is the zero vector, then there is nothing to prove. So we may assume that neither vector is the zero vector.

Let $\vec{u} = x\vec{v} + \vec{w}$, where x is a scalar, and let

$$f(x) = \vec{u} \cdot \vec{u} = |\vec{u}|^2.$$

Then

$$0 \le f(x) = (\vec{v} \cdot \vec{v})x^2 + 2(\vec{v} \cdot \vec{w})x + \vec{w} \cdot \vec{w} = ax^2 + bx + c.$$

So f(x) has at most one root. It follows that the discriminant $b^2 - 4ac \leq 0$, with equality iff f(x) has a root. Hence

$$b^{2} - 4ac = 4(\vec{v} \cdot \vec{w})^{2} - 4\|\vec{v}\|^{2}\|\vec{w}\|^{2} \le 0.$$

Rearranging, gives

$$(\vec{v} \cdot \vec{w})^2 \le \|\vec{v}\|^2 \|\vec{w}\|^2.$$

Taking square roots, gives

$$|\vec{v} \cdot \vec{w}| \le \|v\| \|w\|.$$

Now, f(x) has a root λ iff we have equality here. Hence $0 = f(\lambda) = |\lambda \vec{v} + \vec{w}|^2$, and $\lambda \vec{v} + \vec{w} = \vec{0}$. In other words, $\vec{w} = -\lambda \vec{v}$ and \vec{v} and \vec{w} are parallel.

Blackboard 4. If \vec{v} and $\vec{w} \in \mathbb{R}^n$ are non-zero vectors, then the angle between them is the unique angle $0 \le \theta \le \pi$ such that

$$\cos \theta = \frac{\vec{v} \cdot \vec{w}}{\|\vec{v}\| \|\vec{w}\|}.$$

Note that the fraction is between -1 and 1, by the Cauchy-Schwarz-Bunjakowski inequality, so this does makes sense. We also showed in that the angle is 0 or π if and only if \vec{v} and \vec{w} are parallel.

Blackboard 5. A linear transformation $f : \mathbb{R}^n \to \mathbb{R}^m$ is a function satisfying

$$f(\lambda \vec{v}) = \lambda f(\vec{v})$$

and

$$f(\vec{v} + \vec{w}) = f(\vec{v}) + f(\vec{w}).$$

It doesn't matter if we apply the function before or after multiplying by a scalar. It also doesn't matter if we apply the function before or after adding.

Theorem 6. A linear transformation $f \colon \mathbb{R} \to \mathbb{R}$ is of the form f(x) = ax where a = f(1).

Proof.

$$f(x) = f(x \cdot 1) = x \cdot f(1) = ax.$$

Theorem 7. A linear transformation $f : \mathbb{R}^2 \to \mathbb{R}^2$ is of the form

$$f(\vec{v}) = \begin{pmatrix} a_{11}v_1 + a_{12}v_2\\ a_{21}v_1 + a_{22}v_2 \end{pmatrix},$$

where

$$\binom{a_{11}}{a_{21}} = f(\hat{e}_1)$$

and

$$\binom{a_{12}}{a_{22}} = f(\hat{e}_2),$$

or, equivalently, $a_{ij} = f(\hat{e}_j)_i = \hat{e}_i \cdot f(\hat{e}_j)$.

Proof. By the definition of a linear transformation,

$$f(\vec{v}) = f(v_1\hat{e}_1 + v_2\hat{e}_2)$$

= $f(v_1\hat{e}_1) + f(v_2\hat{e}_2)$
= $v_1f(\hat{e}_1) + v_2f(\hat{e}_2)$.

substituting the definitions of the a_{ij} 's, we get

$$= v_1 \begin{pmatrix} a_{11} \\ a_{21} \end{pmatrix} + v_2 \begin{pmatrix} a_{12} \\ a_{22} \end{pmatrix}$$
$$= \begin{pmatrix} a_{11}v_1 + a_{12}v_2 \\ a_{21}v_1 + a_{22}v_2 \end{pmatrix}.$$

Theorem 8. A linear transformation $f : \mathbb{R}^n \to \mathbb{R}^m$ is of the form

$$f(\vec{v}) = \begin{pmatrix} a_{11}v_1 + a_{12}v_2 + \ldots + a_{1n}v_n \\ a_{21}v_1 + a_{22}v_2 + \ldots + a_{2n}v_n \\ \ldots \\ a_{m1}v_1 + a_{m2}v_2 + \ldots + a_{mn}v_n \end{pmatrix} = \begin{pmatrix} \sum_{j=1}^{n} a_{1j}v_j \\ \sum_{j=1}^{n} a_{2j}v_j \\ \ldots \\ \sum_{j=1}^{n} a_{mj}v_j \end{pmatrix},$$

where $a_{ij} = f(\hat{e}_j)_i = \hat{e}_i \cdot f(\hat{e}_j)$.

The proof is the same as for the previous case. One way to describe such a transformation is in a matrix.

Blackboard 9. The $m \times n$ matrix A associated with the transformation $f : \mathbb{R}^n \to \mathbb{R}^m$ the m-by-a array of real numbers

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & & & & \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

where $a_{ij} = f(\hat{e}_j)_i = \hat{e}_i \cdot f(\hat{e}_j)$. We denote $A = (a_{ij})$.

Example:

Blackboard 10. If $f : \mathbb{R}^2 \to \mathbb{R}^2$ is

$$f(\vec{v}) = \begin{pmatrix} 2v_1 - v_2 \\ v_1 \end{pmatrix}$$

then the associated matrix is

$$A = \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix} \cdot$$

Blackboard 11. Let $A = (a_{ij})$ be the matrix associated with the linear transformation $f : \mathbb{R}^n \to \mathbb{R}^m$. We define the product of A with $\vec{v} \in \mathbb{R}^n$ by

$$A \cdot \vec{v} = f(\vec{v}) = \begin{pmatrix} \sum_{j=1}^{n} a_{1j}v_j \\ \sum_{j=1}^{n} a_{2j}v_j \\ \dots \\ \sum_{j=1}^{n} a_{mj}v_j \end{pmatrix}.$$

The is the same as saying that the *i*th component of $A \cdot \vec{v}$ is the "dot product" of the *i*th row of A with \vec{v} .

Theorem 12. Let $f, g: \mathbb{R}^n \to \mathbb{R}^m$ and $h: \mathbb{R}^m \to \mathbb{R}^p$ be linear transformations. Then

- $f_1(\vec{v}) = \lambda f(\vec{v})$ is a linear transformation from $\mathbb{R}^n \to \mathbb{R}^m$.
- $f_2(\vec{v}) = f(\vec{v}) + g(\vec{v})$ is a linear transformation from $\mathbb{R}^n \to \mathbb{R}^m$.
- f₃(v) = h(f(v)) is a linear transformation from ℝⁿ to ℝ^p. We also denote it by h ∘ f.

Theorem 13. Let $f, g: \mathbb{R}^n \to \mathbb{R}^m$ and $h: \mathbb{R}^m \to \mathbb{R}^p$ be linear transformations. Let $A = (a_{ij}), B = (b_{ij})$ and $C = (c_{ij})$ be the matrices associated with f, g and h, respectively.

• Let $f_1(\vec{v}) = \lambda f(\vec{v})$. Then the matrix associated with f_1 is (λa_{ij}) . (We denote this matrix by λA .)

- $f_2(\vec{v}) = f(\vec{v}) + g(\vec{v})$. Then the matrix associated with f_2 is $(a_{ij} + b_{ij})$. (We denote this matrix by A + B.)
- $f_3 = h(f(\vec{v}))$. Then the matrix associated with f_3 is (d_{ij}) , where

$$d_{ij} = \sum_{k=1}^{m} c_{ik} a_{kj}.$$

(We denote this matrix by $C \cdot A$.)

Multiplying a matrix A by λ means multiplying each entry by λ . Any matrix can be multiplied by any scalar.

Adding two matrices means adding the corresponding entires. Only matrices of the same dimensions can be added.

The ijth entry of $C \cdot A$ is the "dot product" of the *i* row of *C* with the *j*th column of *A*. The product *CA* exists only if the number of columns in *C* is equal to the number of rows in *A*.

Proof. We prove (3). Let $D = (d_{ij})$ be the matrix associated with f_3 . Then by definition

$$d_{ij} = \hat{e}_i \cdot f_3(\hat{e}_j)$$

= $\hat{e}_i \cdot h(f(\hat{e}_j))$
= $\hat{e}_i \cdot h(a_{1j}\hat{e}_1 + a_{2j}\hat{e}_2 + \ldots + a_{mj}\hat{e}_m)$
= $\hat{e}_i \cdot \sum_{k=1}^m a_{kj}h(\hat{e}_k)$
= $\sum_{k=1}^m c_{ik}a_{kj}.$

Example.

Blackboard 14. If

$$A = \begin{pmatrix} 1 & -1 \\ 3 & -4 \end{pmatrix} \quad and \quad B = \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix},$$

$$(2 \quad 0)$$

then

and

$$A + B = \begin{pmatrix} 2 & 0\\ 5 & -5 \end{pmatrix},$$
$$3A = \begin{pmatrix} 3 & -3\\ 9 & -12 \end{pmatrix}.$$

Another example.

Blackboard 15. Let

$$c = \begin{pmatrix} 1 & -2 & 1 \\ 1 & -1 & 5 \end{pmatrix}$$
 and $A = \begin{pmatrix} 2 & 1 \\ 1 & -4 \\ -1 & 1 \end{pmatrix}$.

Then D = CA has shape 2×2 , and in fact

$$D = CA = \begin{pmatrix} -1 & 10\\ -4 & 10 \end{pmatrix}.$$

4

Theorem 16. Let A, B and C be matrices with dimensions $m \times n$, $n \times p$ and $p \times q$, respectively. Then (AB)C = A(BC).

Matrix multiplication is associative.

Proof. Let f, g, h be the linear transformations associated with A, B and C, respectively. Then AB is the matrix associated with $f \circ g$, and BC is the matrix associated with $g \circ h$. Hence (AB)C is the matrix associated with $(f \circ g) \circ h$, and A(BC) is the matrix associated with $f \circ (g \circ h)$. But $(f \circ g) \circ h = f \circ (g \circ h)$, and therefore A(BC) = (AB)C.

Blackboard 17. In general, $AB \neq BA$. For example, if A = (1,2) and $B = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$ then

$$AB = (1,2) \cdot \begin{pmatrix} 3\\4 \end{pmatrix} = (11) \quad and \quad BA = \begin{pmatrix} 3\\4 \end{pmatrix} \cdot (1,2) = \begin{pmatrix} 3&6\\4&8 \end{pmatrix}.$$

Even if A and B are the same size then sometimes $AB \neq BA$. Suppose

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \quad and \quad B = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}.$$

Then AB and BA are both 2×2 matrices. But

$$AB = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$$
 and $BA = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$.

This is related to the fact that in general $f \circ g \neq g \circ f$.