
Calculus of Variations

Example 1. Consider two circles of radius one, parallel to the z-axis, whose centers
are at (0, 0, a) and (0, 0,−a). If we connect them by a cylinder (of radius one), then
the surface area of the cylinder is 4πa. Can we connect them by a surface with a
smaller area?

We’ll connect them by a surface of cylindrical symmetry whose radius is given
by f : [−a, a]→ R:

S = {(r, θ, z) : 0 ≤ θ ≤ 2π,−a ≤ z ≤ a, r ≤ f(z)}.

We will want f(−a) = f(a) = 1, so that the ends of the surface coincide with the
circle.

The area of this surface is

J [f ] =

∫ a

−a
f(z)

√
1 + f ′(z)2 dz.

Example 2. Consider a ball traveling along a rail f : [0, a] → R, from x = 0 to
x = a, and with f(0) = f(a) = 0. If f(x) < 0 for x ∈ (0, a) then the ball will
move from (0, 0) to (a, 0), given that there is a constant gravitational field exerting
a force of gm downwards.

The speed of the ball at height f(x) will satisfy 1
2mv(x)2 = −mgf(x), so that

v(x) =
√
−2gf(x). Hence the total travel time will be

J [f ] =

∫ a

0

√
1 + f ′(x)2

−2gf(x)
dx

More generally, let L : R3 → R be C2, let f : [a, b]→ R be C2, and let

J [f ] =

∫ b

a

L(x, f(x), f ′(x)) dx

be a functional, or a function from the space of functions to the reals. We would
like to minimize (or maximize) J : that is, we would like to find a function f such
that J [f ] is minimal, and which satisfies some condition at a and b (e.g., f(a) = C1

and f(b) = C2 for some constants C1, C2 ∈ R.)
Assume f is a (local) minimum. Let h : [a, b]→ R be a continuous function that

satisfies h(a) = h(b) = 0. Then for small ε > 0, it will hold that J [f + εh] ≥ J [f ].
Fix h, and let

Φ(ε) = J [f + εh].

Then Φ has a minimum at ε = 0, and Φ′(0) = 0. Hence

0 = Φ′(0) =
d

dε

∫ b

a

L(x, f(x) + εh(x), f ′(x) + εh′(x)) dx.

We can move the derivative into the integral to write

0 =

∫ b

a

d

dε

∣∣∣∣
ε=0

L(x, f(x) + εh(x), f ′(x) + εh′(x)) dx

=

∫ b

a

(
∂L

∂f
(x, f(x), f ′(x)) · h+

∂L

∂f ′
(x, f(x), f ′(x)) · h′(x)

)
dx,

1



2

where ∂L/∂f and ∂L/∂f ′ denote the partial derivatives of L with respect to its
second and third argument, respectively. Applying integration by parts to the
second addend yields∫ b

a

(
∂L

∂f
· h− h d

dx

∂L

∂f ′

)
dx+

∂L

∂f ′
h

∣∣∣∣b
a

= 0,

Since h vanishes at a and b, then the last term is zero, and we can write∫ b

a

(
∂L

∂f
− d

dx

∂L

∂f ′

)
hdx = 0.

Now, this holds for any choice of h. We will need the following lemma:

Lemma 3 (Fundamental lemma of the calculus of variations). Let g : [a, b]→ R in
Ck satisfy ∫ b

a

g(x)h(x) dx = 0

for all h : [a, b]→ R in Ck such that h(a) = h(b) = 0. Then g is identically zero on
[a, b].

Proof. Choose h(x) = (x− a) · (b− x) · g(x). Then∫ b

a

(x− a)(x− b)g(x)2 dx = 0.

Since the integrand is positive and continuous it must be zero everywhere. Hence
g is zero everywhere. �

Applying this above we have that

∂L

∂f
− d

dx

∂L

∂f ′
= 0

everywhere on [a, b]. This is called the Euler-Lagrange equation. Note that is has
to hold for all local minima, but may holds for other points too (and not only
maxima).

When L(x, f, f ′) does not depend on x, then this equation can be partially solved
to yield the Beltrami identity:

L− f ′ ∂L
∂f ′

= C,

for some constant C.
Let’s try to solve the first example. Trying to connect the two circles, we have

L(z, f(z), f ′(z)) = f(z)
√

1 + f ′(z)2.

The Beltrami identity yields

f
√

1 + f ′2 − f ′ ff ′√
1 + f ′2

= C.

Hence

f
(
1 + f ′2

)
− ff ′2 = C

√
1 + f ′2

and

f = C
√

1 + f ′2,
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or

f2 = C2
(
1 + f ′2

)
.

Solving for f ′ yields

df

dz
=

√
f2 − C2

C

We will solve for z as a function of f :

dz

df
=

C√
f2 − C2

and so

z = C

∫
df√

f2 − C2
= C cosh−1(f/C) +D

and we have

f(z) = C cosh((z −D)/C).

This function is called a catenary.
Since f(−a) = f(a) = 1 we can find C and D:

1 = C cosh((a−D)/C) = C cosh((−a−D)/C) = C cosh((a+D)/C),

where the last equality follows from the fact that cosh is an even function. Hence

(a−D)/C = (a+D)/C,

and D = 0. C is therefore the solution to

C cosh(a/C) = 1.

This cannot be solved analytically. And it does not always have a solution! In that
case there is no continuous function that minimizes the surface area.

Let’s try to solve the second example. Here we have

L(x, f, f ′) =

√
1 + f ′2

−2gf
.

Applying again the Beltrami identity yields√
1 + f ′2

−2gf
− f ′2√

1 + f ′2
1√
−2gf

= C

which simplifies to

1√
1 + f ′2

√
−2gf

= C.

and further to

(1 + f ′2)f = − 1

2gC2
.(1)

Denote r = 1
2gC2 . Let’s parametrize x by θ:

x(θ) =
r

2
(θ − sin θ),
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for θ ∈ [0, 2π], and let y(θ) = f(x(θ)). Then

y′(θ) =
df

dx

dx

dθ
= f ′(x(θ))

r

2
(1− cos θ).

Hence (1) becomes (
1 +

4y′(θ)2

r2(1− cos θ)2

)
y(θ) = −r.

This can be solved to yield

y(θ) =
r

2
(cos θ − 1).

Hence the graph of f is the parametrized curve

(x(θ), y(θ)) =
r

2

(
θ − sin θ, cos θ − 1

)
.

If we set r/2 = a/(2π) then this curve passes through (0, 0) and (0, a). Hence the
solution is

(x(θ), y(θ)) =
a

2π

(
θ − sin θ, cos θ − 1

)
.

The lowest point in the curve will be in its middle, at height a/π. This curve is
simply a cycloid.

Consider a particle moving under the influence of a potential U : R → R. If we
denote its position at time t by x(t), then its kinetic energy is T (t) = 1

2mx
′(t)2.

Let

L(t, x, x′) = T (t)− U(x) = 1
2mx

′2 − U(x).

The action between time t0 and t1 is denoted by

S = S[x] =

∫ t1

t0

L(t, x(t), x′(t)) dt =

∫ t1

t0

[T (t)− U(x(t))] dt =

∫ t1

t0

[
1
2mx

′(t)2 − U(x(t))
]

dt

By the Euler-Lagrange equation, every minimal action trajectory satisfies

∂L

∂x
=

d

dt

∂L

∂x′

and so

−dU(x)

dx
= m

dx′(t)

dt
= mx′′(t).

Since F = −dU
dx , this can also be written as

F = ma.


