Calculus of Variations

Example 1. Consider two circles of radius one, parallel to the z-axis, whose centers are at $(0,0, a)$ and $(0,0,-a)$. If we connect them by a cylinder (of radius one), then the surface area of the cylinder is $4 \pi a$. Can we connect them by a surface with a smaller area?

We'll connect them by a surface of cylindrical symmetry whose radius is given by $f:[-a, a] \rightarrow \mathbb{R}$:

$$
S=\{(r, \theta, z): 0 \leq \theta \leq 2 \pi,-a \leq z \leq a, r \leq f(z)\}
$$

We will want $f(-a)=f(a)=1$, so that the ends of the surface coincide with the circle.

The area of this surface is

$$
J[f]=\int_{-a}^{a} f(z) \sqrt{1+f^{\prime}(z)^{2}} \mathrm{~d} z
$$

Example 2. Consider a ball traveling along a rail $f:[0, a] \rightarrow \mathbb{R}$, from $x=0$ to $x=a$, and with $f(0)=f(a)=0$. If $f(x)<0$ for $x \in(0, a)$ then the ball will move from $(0,0)$ to $(a, 0)$, given that there is a constant gravitational field exerting a force of gm downwards.

The speed of the ball at height $f(x)$ will satisfy $\frac{1}{2} m v(x)^{2}=-m g f(x)$, so that $v(x)=\sqrt{-2 g f(x)}$. Hence the total travel time will be

$$
J[f]=\int_{0}^{a} \sqrt{\frac{1+f^{\prime}(x)^{2}}{-2 g f(x)}} \mathrm{d} x
$$

More generally, let $L: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be \mathcal{C}^{2}, let $f:[a, b] \rightarrow \mathbb{R}$ be \mathcal{C}^{2}, and let

$$
J[f]=\int_{a}^{b} L\left(x, f(x), f^{\prime}(x)\right) \mathrm{d} x
$$

be a functional, or a function from the space of functions to the reals. We would like to minimize (or maximize) J : that is, we would like to find a function f such that $J[f]$ is minimal, and which satisfies some condition at a and b (e.g., $f(a)=C_{1}$ and $f(b)=C_{2}$ for some constants $C_{1}, C_{2} \in \mathbb{R}$.)

Assume f is a (local) minimum. Let $h:[a, b] \rightarrow \mathbb{R}$ be a continuous function that satisfies $h(a)=h(b)=0$. Then for small $\epsilon>0$, it will hold that $J[f+\epsilon h] \geq J[f]$.

Fix h, and let

$$
\Phi(\epsilon)=J[f+\epsilon h] .
$$

Then Φ has a minimum at $\epsilon=0$, and $\Phi^{\prime}(0)=0$. Hence

$$
0=\Phi^{\prime}(0)=\frac{\mathrm{d}}{\mathrm{~d} \epsilon} \int_{a}^{b} L\left(x, f(x)+\epsilon h(x), f^{\prime}(x)+\epsilon h^{\prime}(x)\right) \mathrm{d} x
$$

We can move the derivative into the integral to write

$$
\begin{aligned}
0 & =\left.\int_{a}^{b} \frac{\mathrm{~d}}{\mathrm{~d} \epsilon}\right|_{\epsilon=0} L\left(x, f(x)+\epsilon h(x), f^{\prime}(x)+\epsilon h^{\prime}(x)\right) \mathrm{d} x \\
& =\int_{a}^{b}\left(\frac{\partial L}{\partial f}\left(x, f(x), f^{\prime}(x)\right) \cdot h+\frac{\partial L}{\partial f^{\prime}}\left(x, f(x), f^{\prime}(x)\right) \cdot h^{\prime}(x)\right) \mathrm{d} x
\end{aligned}
$$

where $\partial L / \partial f$ and $\partial L / \partial f^{\prime}$ denote the partial derivatives of L with respect to its second and third argument, respectively. Applying integration by parts to the second addend yields

$$
\int_{a}^{b}\left(\frac{\partial L}{\partial f} \cdot h-h \frac{\mathrm{~d}}{\mathrm{~d} x} \frac{\partial L}{\partial f^{\prime}}\right) \mathrm{d} x+\left.\frac{\partial L}{\partial f^{\prime}} h\right|_{a} ^{b}=0
$$

Since h vanishes at a and b, then the last term is zero, and we can write

$$
\int_{a}^{b}\left(\frac{\partial L}{\partial f}-\frac{\mathrm{d}}{\mathrm{~d} x} \frac{\partial L}{\partial f^{\prime}}\right) h \mathrm{~d} x=0
$$

Now, this holds for any choice of h. We will need the following lemma:
Lemma 3 (Fundamental lemma of the calculus of variations). Let $g:[a, b] \rightarrow \mathbb{R}$ in \mathcal{C}^{k} satisfy

$$
\int_{a}^{b} g(x) h(x) \mathrm{d} x=0
$$

for all $h:[a, b] \rightarrow \mathbb{R}$ in \mathcal{C}^{k} such that $h(a)=h(b)=0$. Then g is identically zero on $[a, b]$.
Proof. Choose $h(x)=(x-a) \cdot(b-x) \cdot g(x)$. Then

$$
\int_{a}^{b}(x-a)(x-b) g(x)^{2} \mathrm{~d} x=0
$$

Since the integrand is positive and continuous it must be zero everywhere. Hence g is zero everywhere.

Applying this above we have that

$$
\frac{\partial L}{\partial f}-\frac{\mathrm{d}}{\mathrm{~d} x} \frac{\partial L}{\partial f^{\prime}}=0
$$

everywhere on $[a, b]$. This is called the Euler-Lagrange equation. Note that is has to hold for all local minima, but may holds for other points too (and not only maxima).

When $L\left(x, f, f^{\prime}\right)$ does not depend on x, then this equation can be partially solved to yield the Beltrami identity:

$$
L-f^{\prime} \frac{\partial L}{\partial f^{\prime}}=C
$$

for some constant C.
Let's try to solve the first example. Trying to connect the two circles, we have

$$
L\left(z, f(z), f^{\prime}(z)\right)=f(z) \sqrt{1+f^{\prime}(z)^{2}}
$$

The Beltrami identity yields

$$
f \sqrt{1+f^{\prime 2}}-f^{\prime} \frac{f f^{\prime}}{\sqrt{1+f^{\prime 2}}}=C
$$

Hence

$$
f\left(1+f^{\prime 2}\right)-f f^{\prime 2}=C \sqrt{1+f^{\prime 2}}
$$

and

$$
f=C \sqrt{1+f^{\prime 2}}
$$

or

$$
f^{2}=C^{2}\left(1+f^{\prime 2}\right)
$$

Solving for f^{\prime} yields

$$
\frac{\mathrm{d} f}{\mathrm{~d} z}=\frac{\sqrt{f^{2}-C^{2}}}{C}
$$

We will solve for z as a function of f :

$$
\frac{\mathrm{d} z}{\mathrm{~d} f}=\frac{C}{\sqrt{f^{2}-C^{2}}}
$$

and so

$$
z=C \int \frac{\mathrm{~d} f}{\sqrt{f^{2}-C^{2}}}=C \cosh ^{-1}(f / C)+D
$$

and we have

$$
f(z)=C \cosh ((z-D) / C)
$$

This function is called a catenary.
Since $f(-a)=f(a)=1$ we can find C and D :

$$
1=C \cosh ((a-D) / C)=C \cosh ((-a-D) / C)=C \cosh ((a+D) / C)
$$

where the last equality follows from the fact that cosh is an even function. Hence

$$
(a-D) / C=(a+D) / C
$$

and $D=0 . C$ is therefore the solution to

$$
C \cosh (a / C)=1
$$

This cannot be solved analytically. And it does not always have a solution! In that case there is no continuous function that minimizes the surface area.

Let's try to solve the second example. Here we have

$$
L\left(x, f, f^{\prime}\right)=\sqrt{\frac{1+f^{\prime 2}}{-2 g f}}
$$

Applying again the Beltrami identity yields

$$
\sqrt{\frac{1+f^{\prime 2}}{-2 g f}}-\frac{f^{\prime 2}}{\sqrt{1+f^{\prime 2}}} \frac{1}{\sqrt{-2 g f}}=C
$$

which simplifies to

$$
\frac{1}{\sqrt{1+f^{\prime 2}} \sqrt{-2 g f}}=C
$$

and further to

$$
\begin{equation*}
\left(1+f^{\prime 2}\right) f=-\frac{1}{2 g C^{2}} \tag{1}
\end{equation*}
$$

Denote $r=\frac{1}{2 g C^{2}}$. Let's parametrize x by θ :

$$
x(\theta)=\frac{r}{2}(\theta-\sin \theta)
$$

4
for $\theta \in[0,2 \pi]$, and let $y(\theta)=f(x(\theta))$. Then

$$
y^{\prime}(\theta)=\frac{\mathrm{d} f}{\mathrm{~d} x} \frac{\mathrm{~d} x}{\mathrm{~d} \theta}=f^{\prime}(x(\theta)) \frac{r}{2}(1-\cos \theta)
$$

Hence (1) becomes

$$
\left(1+\frac{4 y^{\prime}(\theta)^{2}}{r^{2}(1-\cos \theta)^{2}}\right) y(\theta)=-r
$$

This can be solved to yield

$$
y(\theta)=\frac{r}{2}(\cos \theta-1) .
$$

Hence the graph of f is the parametrized curve

$$
(x(\theta), y(\theta))=\frac{r}{2}(\theta-\sin \theta, \cos \theta-1)
$$

If we set $r / 2=a /(2 \pi)$ then this curve passes through $(0,0)$ and $(0, a)$. Hence the solution is

$$
(x(\theta), y(\theta))=\frac{a}{2 \pi}(\theta-\sin \theta, \cos \theta-1)
$$

The lowest point in the curve will be in its middle, at height a / π. This curve is simply a cycloid.

Consider a particle moving under the influence of a potential $U: \mathbb{R} \rightarrow \mathbb{R}$. If we denote its position at time t by $x(t)$, then its kinetic energy is $T(t)=\frac{1}{2} m x^{\prime}(t)^{2}$. Let

$$
L\left(t, x, x^{\prime}\right)=T(t)-U(x)=\frac{1}{2} m x^{\prime 2}-U(x)
$$

The action between time t_{0} and t_{1} is denoted by
$S=S[x]=\int_{t_{0}}^{t_{1}} L\left(t, x(t), x^{\prime}(t)\right) \mathrm{d} t=\int_{t_{0}}^{t_{1}}[T(t)-U(x(t))] \mathrm{d} t=\int_{t_{0}}^{t_{1}}\left[\frac{1}{2} m x^{\prime}(t)^{2}-U(x(t))\right] \mathrm{d} t$
By the Euler-Lagrange equation, every minimal action trajectory satisfies

$$
\frac{\partial L}{\partial x}=\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial L}{\partial x^{\prime}}
$$

and so

$$
-\frac{\mathrm{d} U(x)}{\mathrm{d} x}=m \frac{\mathrm{~d} x^{\prime}(t)}{\mathrm{d} t}=m x^{\prime \prime}(t)
$$

Since $F=-\frac{\mathrm{d} U}{\mathrm{~d} x}$, this can also be written as

$$
F=m a
$$

