STOKES'S THEOREM

BASED ON LECTURE NOTES BY JAMES MCKERNAN AND PAVEL ETINGOF

Theorem 1 (Stokes's Theorem). Let $S \subset \mathbb{R}^3$ be a differentiable parametrized two dimensional surface. Let $\vec{F} : S \longrightarrow \mathbb{R}^3$ be a \mathcal{C}^1 vector field.

Then

$$\iint_{S} \operatorname{curl} \vec{F} \cdot \mathrm{d} \vec{S} = \int_{\partial S} \vec{F} \cdot \mathrm{d} \vec{s},$$

where ∂S is oriented compatibly with the orientation on S.

Example 2. Let S look like a pair of pants. Choose the orientation of S such that the normal vector is pointing outwards. There are three oriented curves C_1 , C_2 and C_3 (the two legs and the waist). Suppose that we are given a vector field \vec{B} with zero curvature. Then (1) says that

$$\int_{C_3} \vec{B} \cdot \mathrm{d}\vec{s} + \int_{C_1'} \vec{B} \cdot \mathrm{d}\vec{s} + \int_{C_2'} \vec{B} \cdot \mathrm{d}\vec{s} = \iiint_S \operatorname{curl} \vec{B} \cdot \mathrm{d}\vec{S} = 0.$$

Here C'_1 and C'_2 denote the curves C_1 and C_2 with the opposite orientation. In other words,

$$\int_{C_3} \vec{B} \cdot d\vec{s} = \int_{C_1} \vec{B} \cdot d\vec{s} + \int_{C_2} \vec{B} \cdot d\vec{s}.$$

Example 3. Let S be a closed surface (i.e., without a boundary). For example, the sphere has no boundary. Then Stokes's Theorem implies that

$$\iint_{S} \operatorname{curl} \vec{F} \cdot \mathrm{d} \vec{S} = 0.$$

Proof of Stokes's Theorem. Let S be parametrized by $\vec{r}: D \to \mathbb{R}^3$ for some region $D \subset \mathbb{R}^2$, and denote $\vec{r}(u, v) = (x(u, v), y(u, v), z(u, v))$. We define the vector field $\vec{G}: D \to \mathbb{R}^2$ by

$$G_1(u,v) = \vec{F}(\vec{r}(u,v)) \cdot \frac{\partial \vec{r}}{\partial u}(u,v) = F_1 x_u + F_2 y_u + F_3 z_v$$

and

$$G_2(u,v) = \vec{F}(\vec{r}(u,v)) \cdot \frac{\partial \vec{r}}{\partial v}(u,v) = F_1 x_v + F_2 y_v + F_3 z_v$$

We claim that

(1)
$$\iint_{S} \operatorname{curl} \vec{F} \cdot \mathrm{d}\vec{S} = \iint_{D} \left(\frac{\partial G_{2}}{\partial x} - \frac{\partial G_{1}}{\partial y} \right) \, \mathrm{d}u \, \mathrm{d}v,$$

and that

(2)
$$\oint_{\partial S} \vec{F} \cdot d\vec{s} = \oint_{\partial D} \vec{G} \cdot d\vec{s}.$$

Then the statement follows from Green's Theorem, which states that

$$\oint_{\partial D} \vec{G} \cdot d\vec{s} = \iint_{D} \left(\frac{\partial G_2}{\partial x} - \frac{\partial G_1}{\partial y} \right) \, \mathrm{d}u \, \mathrm{d}v.$$

It therefore remains to establish (1) and (2). We will start with the former.

$$\operatorname{curl} \vec{F} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_1 & F_2 & F_3 \end{vmatrix}$$
$$= \left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z}\right) \hat{i} - \left(\frac{\partial F_3}{\partial x} - \frac{\partial F_1}{\partial z}\right) \hat{j} + \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y}\right) \hat{k}.$$

On the other hand,

$$\frac{\partial \vec{r}}{\partial u} = \frac{\partial x}{\partial u}\hat{\imath} + \frac{\partial y}{\partial u}\hat{\jmath} + \frac{\partial z}{\partial u}\hat{k}$$
$$\frac{\partial \vec{r}}{\partial v} = \frac{\partial x}{\partial v}\hat{\imath} + \frac{\partial y}{\partial v}\hat{\jmath} + \frac{\partial z}{\partial v}\hat{k}.$$

It follows that

$$\begin{split} \frac{\partial \vec{r}}{\partial u} \times \frac{\partial \vec{r}}{\partial v} &= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} & \frac{\partial z}{\partial u} \\ \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} & \frac{\partial z}{\partial v} \end{vmatrix} \\ &= \frac{\partial (y,z)}{\partial (u,v)} \hat{i} - \frac{\partial (x,z)}{\partial (u,v)} \hat{j} + \frac{\partial (x,y)}{\partial (u,v)} \hat{k}. \end{split}$$

So,

$$\operatorname{curl} \vec{F} \cdot \frac{\partial \vec{r}}{\partial u} \times \frac{\partial \vec{r}}{\partial v} = \left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z}\right) \frac{\partial (y, z)}{\partial (u, v)} + \left(\frac{\partial F_3}{\partial x} - \frac{\partial F_1}{\partial z}\right) \frac{\partial (x, z)}{\partial (u, v)} + \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y}\right) \frac{\partial (x, y)}{\partial (u, v)}.$$
On the other hand, if we write out

On the other hand, if we write out

$$\frac{\partial G_2}{\partial u} - \frac{\partial G_1}{\partial v},$$

using the chain rule, we can see that it is also equal to the RHS. This is (1).

To prove (2), parametrize
$$\partial D$$
 by $(u(t), v(t))$, for $t \in [0, 1]$. Then

$$\vec{p}(t) = \vec{r}(u(t), v(t)) = (x(u(t)), y(u(t)), z(u(t)))$$

is a parametrization of ∂S , and

$$\begin{split} \oint_{\partial S} \vec{F} \cdot d\vec{S} \\ &= \int_0^1 \vec{F}(\vec{p}(t)) \cdot \frac{d\vec{p}}{dt}(t) dt \\ &= \int_0^1 \vec{F} \cdot \left(x_u \frac{du}{dt} + x_v \frac{dv}{dt}, y_u \frac{du}{dt} + y_v \frac{dv}{dt}, z_u \frac{du}{dt} + z_v \frac{dv}{dt} \right) dt \\ &= \int_0^1 \left((F_1 x_u + F_2 y_u + F_3 z_u) \frac{du}{dt} + (F_1 x_v + F_2 y_v + F_3 z_v) \frac{dv}{dt} \right) dt \\ &= \int_0^1 \left(G_1 \frac{du}{dt} + G_2 \frac{dv}{dt} \right) dt \\ &= \oint_{\partial D} \vec{G} \cdot d\vec{s}. \end{split}$$

This proves (2).