Stokes's Theorem
Based on lecture notes by James McKernan and Pavel Etingof
Theorem 1 (Stokes's Theorem). Let $S \subset \mathbb{R}^{3}$ be a differentiable parametrized two dimensional surface. Let $\vec{F}: S \longrightarrow \mathbb{R}^{3}$ be a \mathcal{C}^{1} vector field.

Then

$$
\iint_{S} \operatorname{curl} \vec{F} \cdot \mathrm{~d} \vec{S}=\int_{\partial S} \vec{F} \cdot \mathrm{~d} \vec{s}
$$

where ∂S is oriented compatibly with the orientation on S.
Example 2. Let S look like a pair of pants. Choose the orientation of S such that the normal vector is pointing outwards. There are three oriented curves C_{1}, C_{2} and C_{3} (the two legs and the waist). Suppose that we are given a vector field \vec{B} with zero curvature. Then (1) says that

$$
\int_{C_{3}} \vec{B} \cdot \mathrm{~d} \vec{s}+\int_{C_{1}^{\prime}} \vec{B} \cdot \mathrm{~d} \vec{s}+\int_{C_{2}^{\prime}} \vec{B} \cdot \mathrm{~d} \vec{s}=\iint_{S} \operatorname{curl} \vec{B} \cdot \mathrm{~d} \vec{S}=0 .
$$

Here C_{1}^{\prime} and C_{2}^{\prime} denote the curves C_{1} and C_{2} with the opposite orientation. In other words,

$$
\int_{C_{3}} \vec{B} \cdot \mathrm{~d} \vec{s}=\int_{C_{1}} \vec{B} \cdot \mathrm{~d} \vec{s}+\int_{C_{2}} \vec{B} \cdot \mathrm{~d} \vec{s} .
$$

Example 3. Let S be a closed surface (i.e., without a boundary). For example, the sphere has no boundary. Then Stokes's Theorem implies that

$$
\iint_{S} \operatorname{curl} \vec{F} \cdot \mathrm{~d} \vec{S}=0
$$

Proof of Stokes's Theorem. Let S be parametrized by $\vec{r}: D \rightarrow \mathbb{R}^{3}$ for some region $D \subset \mathbb{R}^{2}$, and denote $\vec{r}(u, v)=(x(u, v), y(u, v), z(u, v))$. We define the vector field $\vec{G}: D \rightarrow \mathbb{R}^{2}$ by

$$
G_{1}(u, v)=\vec{F}(\vec{r}(u, v)) \cdot \frac{\partial \vec{r}}{\partial u}(u, v)=F_{1} x_{u}+F_{2} y_{u}+F_{3} z_{u}
$$

and

$$
G_{2}(u, v)=\vec{F}(\vec{r}(u, v)) \cdot \frac{\partial \vec{r}}{\partial v}(u, v)=F_{1} x_{v}+F_{2} y_{v}+F_{3} z_{v}
$$

We claim that

$$
\begin{equation*}
\iint_{S} \operatorname{curl} \vec{F} \cdot \mathrm{~d} \vec{S}=\iint_{D}\left(\frac{\partial G_{2}}{\partial x}-\frac{\partial G_{1}}{\partial y}\right) \mathrm{d} u \mathrm{~d} v \tag{1}
\end{equation*}
$$

and that

$$
\begin{equation*}
\oint_{\partial S} \vec{F} \cdot \mathrm{~d} \vec{s}=\oint_{\partial D} \vec{G} \cdot \mathrm{~d} \vec{s} . \tag{2}
\end{equation*}
$$

Then the statement follows from Green's Theorem, which states that

$$
\oint_{\partial D} \vec{G} \cdot \mathrm{~d} \vec{s}=\iint_{D}\left(\frac{\partial G_{2}}{\partial x}-\frac{\partial G_{1}}{\partial y}\right) \mathrm{d} u \mathrm{~d} v
$$

It therefore remains to establish (1) and (2). We will start with the former.

$$
\begin{aligned}
\operatorname{curl} \vec{F} & =\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
F_{1} & F_{2} & F_{3}
\end{array}\right| \\
& =\left(\frac{\partial F_{3}}{\partial y}-\frac{\partial F_{2}}{\partial z}\right) \hat{\imath}-\left(\frac{\partial F_{3}}{\partial x}-\frac{\partial F_{1}}{\partial z}\right) \hat{\jmath}+\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) \hat{k} .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\frac{\partial \vec{r}}{\partial u} & =\frac{\partial x}{\partial u} \hat{\imath}+\frac{\partial y}{\partial u} \hat{\jmath}+\frac{\partial z}{\partial u} \hat{k} \\
\frac{\partial \vec{r}}{\partial v} & =\frac{\partial x}{\partial v} \hat{\imath}+\frac{\partial y}{\partial v} \hat{\jmath}+\frac{\partial z}{\partial v} \hat{k}
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\frac{\partial \vec{r}}{\partial u} \times \frac{\partial \vec{r}}{\partial v} & =\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} & \frac{\partial z}{\partial u} \\
\frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} & \frac{\partial z}{\partial v}
\end{array}\right| \\
& =\frac{\partial(y, z)}{\partial(u, v)} \hat{\imath}-\frac{\partial(x, z)}{\partial(u, v)} \hat{\jmath}+\frac{\partial(x, y)}{\partial(u, v)} \hat{k} .
\end{aligned}
$$

So,
$\operatorname{curl} \vec{F} \cdot \frac{\partial \vec{r}}{\partial u} \times \frac{\partial \vec{r}}{\partial v}=\left(\frac{\partial F_{3}}{\partial y}-\frac{\partial F_{2}}{\partial z}\right) \frac{\partial(y, z)}{\partial(u, v)}+\left(\frac{\partial F_{3}}{\partial x}-\frac{\partial F_{1}}{\partial z}\right) \frac{\partial(x, z)}{\partial(u, v)}+\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) \frac{\partial(x, y)}{\partial(u, v)}$.
On the other hand, if we write out

$$
\frac{\partial G_{2}}{\partial u}-\frac{\partial G_{1}}{\partial v}
$$

using the chain rule, we can see that it is also equal to the RHS. This is (1).
To prove (2), parametrize ∂D by $(u(t), v(t))$, for $t \in[0,1]$. Then

$$
\vec{p}(t)=\vec{r}(u(t), v(t))=(x(u(t)), y(u(t)), z(u(t)))
$$

is a parametrization of ∂S, and

$$
\begin{aligned}
& \oint_{\partial S} \vec{F} \cdot \mathrm{~d} \vec{S} \\
& =\int_{0}^{1} \vec{F}(\vec{p}(t)) \cdot \frac{\mathrm{d} \vec{p}}{\mathrm{~d} t}(t) \mathrm{d} t \\
& =\int_{0}^{1} \vec{F} \cdot\left(x_{u} \frac{\mathrm{~d} u}{\mathrm{~d} t}+x_{v} \frac{\mathrm{~d} v}{\mathrm{~d} t}, y_{u} \frac{\mathrm{~d} u}{\mathrm{~d} t}+y_{v} \frac{\mathrm{~d} v}{\mathrm{~d} t}, z_{u} \frac{\mathrm{~d} u}{\mathrm{~d} t}+z_{v} \frac{\mathrm{~d} v}{\mathrm{~d} t}\right) \mathrm{d} t \\
& =\int_{0}^{1}\left(\left(F_{1} x_{u}+F_{2} y_{u}+F_{3} z_{u}\right) \frac{\mathrm{d} u}{\mathrm{~d} t}+\left(F_{1} x_{v}+F_{2} y_{v}+F_{3} z_{v}\right) \frac{\mathrm{d} v}{\mathrm{~d} t}\right) \mathrm{d} t \\
& =\int_{0}^{1}\left(G_{1} \frac{\mathrm{~d} u}{\mathrm{~d} t}+G_{2} \frac{\mathrm{~d} v}{\mathrm{~d} t}\right) \mathrm{d} t \\
& =\oint_{\partial D} \vec{G} \cdot \mathrm{~d} \vec{s} .
\end{aligned}
$$

This proves (2).

