
The Divergence Theorem
Based on lecture notes by James McKernan and Pavel Etingof

The Divergence Theorem is also known as Gauss’s Theorem, and as Ostrograd-
sky’s Theorem. It was first discovered by Lagrange in 1762, and then independently
by Gauss in 1813 and by Ostrogradsky in 1826. Ostrogradsky gave the first general
proof.

Theorem 1 (Stigler’s law of eponymy). No scientific discovery is named after its
original discoverer.

This was discovered by the sociologist Robert Merton.

Example 2. Some examples from mathematics:

• The Gaussian distribution was discovered by de Moivre.
• L’Hôpital’s rule was discovered by Johann Bernoulli.
• Euler’s constant was discovered by Jacob Bernoulli.
• The Cantor-Bernstein-Schröder Theorem was discovered by Dedekind.
• Burnside’s lemma was discovered by Cauchy. Burnside himself attributed

it to Frobenius.

Theorem 3 (The Divergence Theorem). Let M ⊂ R3 be a compact subset whose

boundary ∂M is a differentiable parametrized two dimensional surface. Let ~F : M −→
R3 be a smooth vector field.

Then ∫∫∫
M

div ~F dxdy dz =

∫∫
∂M

~F · d~S,

where ∂M is given the outward orientation.

We will prove this theorem for that case that M is a region of type I, II and III.

Proof. Suppose D is a subset of the x-y-plane, and that

M = {(x, y, z) : (x, y) ∈ D, a(x, y) ≤ z ≤ b(x, y)}.

Suppose ~F = (0, 0, F3). Then∫∫∫
M

div ~F dx dy dz =

∫∫∫
M

∂F3

∂z
dxdy dz

=

∫∫
D

∫ b(x,y)

a(x,y)

∂F3

∂z
dz dx dy

=

∫∫
D

(F3(x, y, b(x, y))− F3(x, y, a(x, y))) ,dxdy.

Now, divide the boundary ∂M into the top part, ∂M+, and the bottom part,
∂M−. We can parametrize the top part by ~r(x, y) = (x, y, b(x, y)). Then∫∫

∂M+

~F · d~S =

∫∫
D

~F (~r(x, y)) · (~Tx(x, y)× ~Ty(x, y)) dxdy.

Now,

~Tx = (1, 0, bx)

and

~Ty = (0, 1, by),
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and so

~F · (~Tx × ~Ty) =

0 0 F3

1 0 bx
0 1 by

 = F3.

Hence ∫∫
∂M+

~F · d~S =

∫∫
D

F3(x, y, b(x, y) dx dy.

By a similar argument,∫∫
∂M−

~F · d~S = −
∫∫

D

F3(x, y, a(x, y) dxdy.

Where the minus sign is due to the fact that in ∂M− we need to orient the normal
downwards.

We have thus shown the claim for ~F of the form ~F = (0, 0, F3). For general ~F ,
split each integral into three:∫∫∫

M

div ~F dx dy dz =

∫∫∫
M

∂F1

∂x
dxdy dz +

∫∫∫
M

∂F2

∂y
dxdy dz +

∫∫∫
M

∂F3

∂z
dxdy dz

and∫∫
∂M

~F · d~S =

∫∫
∂M

(F1, 0, 0) · d~S +

∫∫
∂M

(0, F2, 0) · d~S +

∫∫
∂M

(0, 0, F3) · d~S.

We already showed that the last addends are equal. To show that the first are equal
and that the second are equal, apply the same proof, but using the characterization
of M as a region of the other types. �

Example 4. Calculate the flux of ~F (x, y, z) = (x, 2y, 3z) through the ellipsoid M
given by x2 + y2/3 + z2/3 = 1.

div ~F = 6. Hence the answer is 6 vol(M). The volume of an ellipsoid x2/a2 +
y2/b2 + z2/c2 = 1 is 4

3πabc. Hence

6 vol(M) = 6
4

3
π ·
√

1 · 3 · 3 = 24π.


