Green's Theorem

Based on lecture notes by James McKernan and Pavel Etingof
Theorem 1 (Green's Theorem). Let D be a compact subset of \mathbb{R}^{2} whose boundary ∂D consists of finitely many simple closed curves, where each curve consists of finitely many \mathcal{C}^{1} arcs, and is given by $\vec{r}_{j}(t), \vec{r}_{j}^{\prime}(t) \neq 0$. Orient the boundary curves so that D is always on the left.

Let $\vec{F}: D \rightarrow \mathbb{R}^{2}, \vec{F}=\left(F_{1}(x, y), F_{2}(x, y)\right)$ be a \mathcal{C}^{1} vector field. Then

$$
\iint_{D}\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) \mathrm{d} x \mathrm{~d} y=\oint_{\partial D} \vec{F} \cdot \mathrm{~d} \vec{s}
$$

This was proved in 1828 by George Green, in a privately published paper. He was 35 then, had only one year of schooling, and had worked in a mill in the previous 20 years. It is not known how he had learned contemporary mathematics.

Proof after the next example.
Example 2. Let $\vec{F}(x, y)=\frac{1}{2}(-y, x)$. Then Green's theorem implies

$$
\operatorname{area}(D)=\oint_{\partial D} \vec{F} \cdot \mathrm{~d} \vec{s}
$$

Proof of Green's Theorem for elementary regions of type 1 and 2. Let D be both of type 1 and type 2 :

$$
\begin{aligned}
D & =\{(x, y): a \leq x \leq b, u(x) \leq y \leq w(x)\} \\
& =\{(x, y): u \leq y \leq w, a(y) \leq x \leq b(y)\}
\end{aligned}
$$

We first think of D as being of type 1 , and parametrize the boundary in four parts: $\vec{r}_{A}(t)=(t, c(t))$, for $t \in[a, b], \vec{r}_{B}(t)=(b, t)$, for $t \in[u(b), w(b)]$, and so on.

Then

$$
\begin{aligned}
\vec{r}_{A}^{\prime}(t) & =\left(1, u^{\prime}(x)\right) \\
\vec{r}_{B}^{\prime}(t) & =(0,1) \\
\vec{r}_{C}^{\prime}(t) & =\left(-1,-w^{\prime}(x)\right) \\
\vec{r}_{D}^{\prime}(t) & =(0,-1)
\end{aligned}
$$

Note that

$$
\oint_{\partial D} \vec{F}(\vec{r}(t)) \cdot \vec{r}^{\prime}(t) \mathrm{d} t=\oint_{\partial D} F_{1}(\vec{r}(t)) r_{1}^{\prime}(t) \mathrm{d} t+\oint_{\partial D} F_{2}(\vec{r}(t)) r_{2}^{\prime}(t) \mathrm{d} t
$$

Now

$$
\oint_{\partial D} F_{1}(r(t)) r_{1}^{\prime}(t) \mathrm{d} t=\int_{a}^{b} F_{1}(x, u(x)) \mathrm{d} x-\int_{a}^{b} F_{1}(x, w(x)) \mathrm{d} x
$$

Using the same technique and thinking of D as being type 2 yields

$$
\oint_{\partial D} F_{2}(r(t)) r_{2}^{\prime}(t) \mathrm{d} t=\int_{u}^{w} F_{2}(y, a(y)) \mathrm{d} y-\int_{u}^{w} F_{2}(y, b(y)) \mathrm{d} y
$$

Hence

$$
\oint_{\partial D} \vec{F}(\vec{r}(t)) \cdot \vec{r}^{\prime}(t) \mathrm{d} t=\int_{a}^{b}\left[F_{1}(x, u(x))-F_{1}(x, w(x))\right] \mathrm{d} x+\int_{u}^{w}\left[F_{2}(y, a(y))-F_{2}(y, b(y))\right] \mathrm{d} y
$$

Note that

$$
\iint_{D}\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) \mathrm{d} x \mathrm{~d} y=\iint_{D} \frac{\partial F_{2}}{\partial x} \mathrm{~d} x \mathrm{~d} y+\iint_{D}-\frac{\partial F_{1}}{\partial y} \mathrm{~d} x \mathrm{~d} y
$$

Now, again thinking of D as being type 1, we can do the second integral to get

$$
\begin{aligned}
\iint_{D}-\frac{\partial F_{1}}{\partial y} \mathrm{~d} x \mathrm{~d} y & =-\int_{a}^{b} \int_{u(x)}^{w(x)} \frac{\partial F_{1}}{\partial y}(x, y) \mathrm{d} y \mathrm{~d} x \\
& =\int_{a}^{b}\left[F_{1}(x, u(x))-F_{1}(x, w(x))\right] \mathrm{d} x
\end{aligned}
$$

Likewise, thinking of D as being of type 2 , we can do the first integral to get

$$
\iint_{D} \frac{\partial F_{2}}{\partial x} \mathrm{~d} x \mathrm{~d} y=\int_{u}^{w}\left[F_{2}(y, a(y))-F_{2}(y, b(y))\right] \mathrm{d} y
$$

and the claim is proved.

