Based on lecture notes by James McKernan
Let I be an open interval and let

$$
\vec{r}: I \longrightarrow \mathbb{R}^{n}
$$

be a parametrised differentiable curve. If $[a, b] \subset I$ then let $C=\vec{r}([a, b])$ be the image of $[a, b]$ and let $f: C \longrightarrow \mathbb{R}$ be a function.
Definition 1. The line integral of f along C is

$$
\oint_{C} f \mathrm{~d} s=\int_{a}^{b} f(\vec{r}(u))\left\|\vec{r}^{\prime}(u)\right\| \mathrm{d} u
$$

Let $u: J \longrightarrow I$ be a diffeomorphism between two open intervals. Suppose that u is C^{1}. We think of u as a coordinate transformation $u=u(t)$; we want to transform from the variable u to the variable t.

Definition 2. We say that u is orientation-preserving if $u^{\prime}(t)>0$ for every $t \in J$.

We say that u is orientation-reversing if $u^{\prime}(t)<0$ for every $t \in J$.
Notice that u is always either orientation-preserving or orientation-reversing (this is a consequence of the intermediate value theorem, applied to the continuous function $\left.u^{\prime}(t)\right)$.

Define a function

$$
\vec{y}: J \longrightarrow \mathbb{R}^{n}
$$

by composition,

$$
\vec{y}(t)=\vec{r}(u(t))
$$

so that $\vec{y}=\vec{r} \circ u$.
Now suppose that $u([c, d])=[a, b]$. Then $C=\vec{y}([c, d])$, so that \vec{y} gives another parametrisation of C.

Lemma 3.

$$
\int_{a}^{b} f(\vec{r}(u))\left\|\vec{r}^{\prime}(u)\right\| \mathrm{d} u=\int_{c}^{d} f(\vec{y}(t))\left\|\vec{y}^{\prime}(t)\right\| \mathrm{d} t
$$

Proof. We deal with the case that u is orientation-preserving. The case that u is orientation-reversing is similar.

As u is orientation-preserving, we have $u(c)=a$ and $u(d)=b$ and so,

$$
\begin{aligned}
\int_{c}^{d} f(\vec{y}(t))\left\|\vec{y}^{\prime}(t)\right\| \mathrm{d} t & =\int_{c}^{d} f(\vec{r}(u(t)))\left\|u^{\prime}(t) \vec{r}^{\prime}(u(t))\right\| \mathrm{d} t \\
& =\int_{c}^{d} f(\vec{r}(u(t)))\left\|\vec{r}^{\prime}(u(t))\right\| u^{\prime}(t) \mathrm{d} t \\
& =\int_{a}^{b} f(\vec{r}(u))\left\|\vec{r}^{\prime}(u)\right\| \mathrm{d} u
\end{aligned}
$$

Now suppose that we have a vector field on C,

$$
\vec{F}: C \longrightarrow \mathbb{R}^{n}
$$

Definition 4. The line integral of \vec{F} along C is

$$
\oint_{C} \vec{F} \cdot \mathrm{~d} \vec{s}=\int_{a}^{b} \vec{F}(\vec{r}(u)) \cdot \vec{r}^{\prime}(u) \mathrm{d} u
$$

Note that now the orientation is very important:

Lemma 5.

$$
\int_{a}^{b} \vec{F}(\vec{r}(u)) \cdot \vec{r}^{\prime}(u) \mathrm{d} u= \begin{cases}\int_{c}^{d} \vec{F}(\vec{y}(t)) \cdot \vec{y}^{\prime}(t) \mathrm{d} t & u^{\prime}(t)>0 \\ -\int_{c}^{d} \vec{F}(\vec{y}(t)) \cdot \vec{y}^{\prime}(t) \mathrm{d} t & u^{\prime}(t)<0\end{cases}
$$

Proof. We deal with the case that u is orientation-reversing. The case that u is orientation-preserving is similar and easier.

As u is orientation-reversing, we have $u(c)=b$ and $u(d)=a$ and so,

$$
\begin{aligned}
\int_{c}^{d} \vec{F}(\vec{y}(t)) \cdot \vec{y}^{\prime}(t) \mathrm{d} t & =\int_{c}^{d} \vec{F}(\vec{r}(u(t))) \cdot \vec{r}^{\prime}(u(t)) u^{\prime}(t) \mathrm{d} t \\
& =\int_{b}^{a} \vec{F}(\vec{r}(u)) \cdot \vec{r}^{\prime}(u) \mathrm{d} u \\
& =-\int_{a}^{b} \vec{F}(\vec{r}(u)) \cdot \vec{r}^{\prime}(u) \mathrm{d} u
\end{aligned}
$$

Example 6. If C is a piece of wire and $f(\vec{r})$ is the mass density at $\vec{r} \in C$, then the line integral

$$
\int_{C} f \mathrm{~d} s
$$

is the total mass of the curve. Clearly this is always positive, whichever way you parametrise the curve.
Example 7. If C is an oriented path and $\vec{F}(\vec{r})$ is a force field, then the line integral

$$
\oint_{C} \vec{F} \cdot \mathrm{~d} \vec{s}
$$

is the work done when moving along C. If we reverse the orientation, then the sign flips. For example, imagine C is a spiral staircase and \vec{F} is the force due to gravity. Going up the staircase costs energy and going down we gain energy.

