Triple integrals

Based on lecture notes by James McKernan
Blackboard 1. Let $B=[a, b] \times[c, d] \times[e, f] \subset \mathbb{R}^{3}$ be a box in space. A partition \mathcal{P} of R is a triple of sequences:

$$
\begin{array}{r}
a=x_{0}<x_{1}<\cdots<x_{n}=b \\
c=y_{0}<y_{1}<\cdots<y_{n}=d \\
e=z_{0}<z_{1}<\cdots<z_{n}=f
\end{array}
$$

The mesh of \mathcal{P} is

$$
m(\mathcal{P})=\max \left\{x_{i}-x_{i-1}, y_{i}-y_{i-1}, z_{i}-z_{i-1} \mid 1 \leq i \leq k\right\}
$$

Now suppose we are given a function

$$
f: B \longrightarrow \mathbb{R}
$$

Pick

$$
\vec{c}_{i j k} \in B_{i j k}=\left[x_{i-1}, x_{i}\right] \times\left[y_{j-1}, y_{j}\right] \times\left[z_{i}, z_{i-1}\right]
$$

Blackboard 2. The sum

$$
S=\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} f\left(\vec{c}_{i j k}\right)\left(x_{i}-x_{i-1}\right)\left(y_{j}-y_{j-1}\right)\left(z_{i}-z_{i-1}\right)
$$

is called a Riemann sum.
Blackboard 3. The function $f: B \longrightarrow \mathbb{R}$ is called integrable, with integral I, if for every $\epsilon>0$, we may find a $\delta>0$ such that for every mesh \mathcal{P} whose mesh size is less than δ, we have

$$
|I-S|<\epsilon
$$

where S is any Riemann sum associated to \mathcal{P}.
If $W \subset \mathbb{R}^{3}$ is a bounded subset and $f: W \longrightarrow \mathbb{R}$ is a bounded function, then pick a box B containing W and extend f by zero to a function $\tilde{f}: B \longrightarrow \mathbb{R}$,

$$
\tilde{f}(x)= \begin{cases}x & \text { if } x \in W \\ 0 & \text { otherwise }\end{cases}
$$

If \tilde{f} is integrable, then we write

$$
\iiint_{W} f(x, y, z) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z=\iiint_{B} \tilde{f}(x, y, z) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z
$$

In particular

$$
\operatorname{vol}(W)=\iiint_{W} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z
$$

There are two pairs of results, which are much the same as the results for double integrals:
Proposition 4. Let $W \subset \mathbb{R}^{2}$ be a bounded subset and let $f: W \longrightarrow \mathbb{R}$ and $g: W \longrightarrow \mathbb{R}$ be two integrable functions. Let λ be a scalar.

Then
(1) $f+g$ is integrable over W and

$$
\iiint_{W} f(x, y, z)+g(x, y, z) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z=\iiint_{W} f(x, y, z) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z+\iiint_{W} g(x, y, z) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z
$$

(2) λf is integrable over W and

$$
\iiint_{W} \lambda f(x, y, z) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z=\lambda \iiint_{W} f(x, y, z) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z .
$$

(3) If $f(x, y, z) \leq g(x, y, z)$ for any $(x, y, z) \in W$, then

$$
\iiint_{W} f(x, y, z) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z \leq \iiint_{W} g(x, y, z) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z .
$$

(4) $|f|$ is integrable over W and

$$
\left|\iiint_{W} f(x, y, z) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z\right| \leq \iiint_{W}|f(x, y, z)| \mathrm{d} x \mathrm{~d} y \mathrm{~d} z .
$$

Proposition 5. Let $W=W_{1} \cup W_{2} \subset \mathrm{R}^{3}$ be a bounded subset and let $f: W \longrightarrow \mathbb{R}$ be a bounded function.

If f is integrable over W_{1} and over W_{2}, then f is integrable over W and and $W_{1} \cap W_{2}$, and we have

$$
\begin{array}{r}
\iiint_{W} f(x, y, z) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z=\iiint_{W_{1}} f(x, y, z) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z+\iiint_{W_{2}} f(x, y, z) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z \\
-\iiint_{W_{1} \cap W_{2}} f(x, y, z) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z .
\end{array}
$$

Blackboard 6. Define three maps

$$
\pi_{i j}: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2},
$$

by projection onto the ith and j th coordinate.
In coordinates, we have

$$
\pi_{12}(x, y, z)=(x, y), \quad \pi_{23}(x, y, z)=(y, z), \quad \text { and } \quad \pi_{13}(x, y, z)=(x, z) .
$$

For example, if we start with a solid pyramid and project onto the $x y$-plane, the image is a square, but it project onto the $x z$-plane, the image is a triangle. Similarly onto the $y z$-plane.

Blackboard 7. A bounded subset $W \subset \mathbb{R}^{3}$ is an elementary subset if is one of four types:

Type 1: $D=\pi_{12}(W)$ is an elementary region and

$$
W=\left\{(x, y, z) \in \mathbb{R}^{2} \mid(x, y) \in D, \epsilon(x, y) \leq z \leq \phi(x, y)\right\},
$$

where $\epsilon: D \longrightarrow \mathbb{R}$ and $\phi: D \longrightarrow \mathbb{R}$ are continuous functions.
Type 2: $D=\pi_{23}(W)$ is an elementary region and

$$
W=\left\{(x, y, z) \in \mathbb{R}^{2} \mid(y, z) \in D, \alpha(y, z) \leq x \leq \beta(y, z)\right\},
$$

where $\alpha: D \longrightarrow \mathbb{R}$ and $\beta: D \longrightarrow \mathbb{R}$ are continuous functions.
Type 3: $D=\pi_{13}(W)$ is an elementary region and

$$
W=\left\{(x, y, z) \in \mathbb{R}^{2} \mid(x, z) \in D, \gamma(x, z) \leq y \leq \delta(x, z)\right\},
$$

where $\gamma: D \longrightarrow \mathbb{R}$ and $\delta: D \longrightarrow \mathbb{R}$ are continuous functions.
The solid pyramid is of type 4.

Theorem 8. Let $W \subset \mathbb{R}^{3}$ be an elementary region and let $f: W \longrightarrow \mathbb{R}$ be a continuous function.

If W is of type 1 , then

$$
\iiint_{W} f(x, y, z) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z=\iint_{\pi_{12}(W)}\left(\int_{\epsilon(x, y)}^{\phi(x, y)} f(x, y, z) \mathrm{d} z\right) \mathrm{d} x \mathrm{~d} y
$$

There are similar statements for types 2 and 3 .
Given a type $1 W \subset \mathbb{R}^{3}$ and a $z \in \mathbb{R}$, let $W_{z}=\left\{(x, y) \in \mathbb{R}^{2} \mid(x, y, z) \in W\right\}$. Note that $W_{z} \subset \mathbb{R}^{2}$.

Theorem 9. Let $W \subset \mathbb{R}^{3}$ be an elementary compact region and let $f: W \longrightarrow \mathbb{R}$ be a continuous function. Let $z_{\min }=\min \{z \in \mathbb{R} \mid \exists x, y$ s.t. $(x, y, z) \in W\}$. Define $z_{\max }$ likewise. If W is of type 1 , then

$$
\iiint_{W} f(x, y, z) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z=\int_{z_{\min }}^{z_{\max }}\left(\iint_{W_{z}} f(x, y, z) \mathrm{d} x \mathrm{~d} y\right) \mathrm{d} z
$$

Again there are similar statements for types 2 and 3 . Let's figure out the volume of the solid ellipsoid:

$$
W=\left\{(x, y, z) \in \mathbb{R}^{3} \left\lvert\,\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}+\left(\frac{z}{c}\right)^{2} \leq 1\right.\right\}
$$

This is an elementary region of type 4.

$$
\begin{aligned}
\operatorname{vol}(W) & =\iiint_{W} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z \\
& =\int_{-a}^{a}\left(\int_{-b \sqrt{1-\left(\frac{x}{a}\right)^{2}}}^{b \sqrt{1-\left(\frac{x}{a}\right)^{2}}}\left(\int_{-c \sqrt{1-\left(\frac{x}{a}\right)^{2}-\left(\frac{y}{b}\right)^{2}}}^{c \sqrt{1-\left(\frac{x}{a}\right)^{2}-\left(\frac{y}{b}\right)^{2}}} \mathrm{~d} z\right) \mathrm{d} y\right) \mathrm{d} x \\
& =\int_{-a}^{a}\left(\int_{-b \sqrt{1-\left(\frac{x}{a}\right)^{2}}}^{b \sqrt{1-\left(\frac{x}{a}\right)^{2}}} 2 c \sqrt{1-\left(\frac{x}{a}\right)^{2}-\left(\frac{y}{b}\right)^{2}} \mathrm{~d} y\right) \mathrm{d} x \\
& =2 c \int_{-a}^{a}\left(\int_{-b \sqrt{1-\left(\frac{x}{a}\right)^{2}}}^{b \sqrt{1-\left(\frac{x}{a}\right)^{2}}} \sqrt{1-\left(\frac{x}{a}\right)^{2}-\left(\frac{y}{b}\right)^{2}} \mathrm{~d} y\right) \mathrm{d} x \\
& =\frac{2 c}{b} \int_{-a}^{a}\left(\int_{-b \sqrt{1-\left(\frac{x}{a}\right)^{2}}}^{b \sqrt{1-\left(\frac{x}{a}\right)^{2}}} \sqrt{b^{2}\left(1-\left(\frac{x}{a}\right)^{2}\right)-y^{2}} \mathrm{~d} y\right) \mathrm{d} x \\
& =\frac{\pi c}{b} \int_{-a}^{a} b^{2}\left(1-\left(\frac{x}{a}\right)^{2}\right) \mathrm{d} x \\
& =\pi b c \int_{-a}^{a} 1-\left(\frac{x}{a}\right)^{2} \mathrm{~d} x
\end{aligned}
$$

We will change variables $u=x / a$. Then

4

$$
\begin{aligned}
& =\pi b c \int_{-a}^{a}\left(1-u^{2}\right) a \mathrm{~d} x \\
& =\pi a b c\left[u-u^{3} / 3\right]_{-1}^{1} \\
& =\frac{4 \pi}{3} a b c
\end{aligned}
$$

Let's use Theorem 9. $z_{\text {min }}=-c$ and $z_{\max }=+c$. Also,

$$
\begin{aligned}
W_{z} & =\left\{(x, y) \mid(x / a)^{2}+(y / b)^{2} \leq 1-(z / c)^{2}\right\} \\
& =\left\{(x, y) \left\lvert\,\left(\frac{x}{a \sqrt{1-(z / c)^{2}}}\right)^{2}+\left(\frac{y}{b \sqrt{1-(z / c)^{2}}}\right)^{2} \leq 1\right.\right\}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\operatorname{vol}(W) & =\iiint_{W} 1 \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z \\
& =\int_{-c}^{c}\left(\iint_{W_{z}} 1 \mathrm{~d} x \mathrm{~d} y\right) \mathrm{d} z
\end{aligned}
$$

The area of W_{z} is $\pi a b\left(1-(z / c)^{2}\right)$. Hence

$$
\begin{aligned}
\operatorname{vol}(W) & =\int_{-c}^{c}\left(\pi a b\left(1-(z / c)^{2}\right)\right) \mathrm{d} z \\
& =\pi a b \int_{-c}^{c}\left(1-(z / c)^{2}\right) \mathrm{d} z
\end{aligned}
$$

We will change variables $u=z / c$. Then

$$
\begin{aligned}
\operatorname{vol}(W) & =\pi a b \int_{-1}^{1}\left(1-u^{2}\right) c \mathrm{~d} u \\
& =\pi a b c\left[u-u^{3} / 3\right]_{-1}^{1} \\
& =\frac{4 \pi}{3} a b c
\end{aligned}
$$

