More double integrals
Based on lecture notes by James McKernan
Proposition 1. Let $D=D_{1} \cup D_{2}$ be a bounded region and let $f: D \longrightarrow \mathbb{R}$ be a function.

If f is integrable over D_{1} and over D_{2}, then f is integrable over D and and $D_{1} \cap D_{2}$, and we have
$\iint_{D} f(x, y) \mathrm{d} x \mathrm{~d} y=\iint_{D_{1}} f(x, y) \mathrm{d} x \mathrm{~d} y+\iint_{D_{2}} f(x, y) \mathrm{d} x \mathrm{~d} y-\iint_{D_{1} \cap D_{2}} f(x, y) \mathrm{d} x \mathrm{~d} y$.
Example 2. Let

$$
D=\left\{(x, y) \in \mathbb{R}^{2} \mid 1 \leq x^{2}+y^{2} \leq 9\right\} .
$$

Then D is not an elementary region. Let

$$
D_{1}=\{(x, y) \in D \mid y \geq 0\} \quad \text { and } \quad D_{2}=\{(x, y) \in D \mid y \leq 0\} .
$$

Then D_{1} and D_{2} are both of type 1 .
If f is continuous, then f is integrable over D and $D_{1} \cap D_{2}$. In fact

$$
\begin{aligned}
D_{1} \cap D_{2}=L \cup R=\left\{(x, y) \in \mathbb{R}^{2} \mid-3\right. & \leq x \leq-1,0 \leq y \leq 0\} \\
& \cup\left\{(x, y) \in \mathbb{R}^{2} \mid 1 \leq x \leq 3,0 \leq y \leq 0\right\} .
\end{aligned}
$$

Now L and R are elementary regions. We have

$$
\iint_{R} f(x, y) \mathrm{d} x \mathrm{~d} y=\int_{1}^{3}\left(\int_{0}^{0} f(x, y) \mathrm{d} y\right) \mathrm{d} x=0 .
$$

Therefore, by symmetry,

$$
\iint_{L} f(x, y) \mathrm{d} x \mathrm{~d} y=\iint_{R} f(x, y) \mathrm{d} x \mathrm{~d} y=0
$$

and so

$$
\iint_{D} f(x, y) \mathrm{d} x \mathrm{~d} y=\iint_{D_{1}} f(x, y) \mathrm{d} x \mathrm{~d} y+\iint_{D_{2}} f(x, y) \mathrm{d} x \mathrm{~d} y .
$$

To integrate f over D_{1}, break D_{1} into three parts.

$$
\begin{aligned}
\iint_{D_{1}} f(x, y) \mathrm{d} x \mathrm{~d} y & =\int_{-3}^{3}\left(\int_{\gamma(x)}^{\delta(x)} f(x, y) \mathrm{d} y\right) \mathrm{d} x \\
& =\int_{-3}^{-1}\left(\int_{0}^{\sqrt{9-x^{2}}} f(x, y) \mathrm{d} y\right) \mathrm{d} x \\
& +\int_{-1}^{1}\left(\int_{\sqrt{1-x^{2}}}^{\sqrt{9-x^{2}}} f(x, y) \mathrm{d} y\right) \mathrm{d} x \\
& +\int_{1}^{3}\left(\int_{0}^{\sqrt{9-x^{2}}} f(x, y) \mathrm{d} y\right) \mathrm{d} x
\end{aligned}
$$

One can do something similar for D_{2}.
Example 3. Calculate the volume of a solid ball of radius a. Let

$$
B=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2} \leq a^{2}\right\} .
$$

We want the volume of B. Break into two pieces. Let

$$
B^{+}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2} \leq a^{2}, z \geq 0\right\} .
$$

Let

$$
D=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leq a^{2}\right\}
$$

Then B^{+}is bounded by the xy-plane and the graph of the function

$$
f: D \longrightarrow \mathbb{R}
$$

given by

$$
f(x, y)=\sqrt{a^{2}-x^{2}-y^{2}}
$$

It follows that

$$
\begin{aligned}
\operatorname{vol}\left(B^{+}\right) & =\iint_{D} \sqrt{a^{2}-x^{2}-y^{2}} \mathrm{~d} y \mathrm{~d} x \\
& =\int_{-a}^{a}\left(\int_{-\sqrt{a^{2}-x^{2}}}^{\sqrt{a^{2}-x^{2}}} \sqrt{a^{2}-x^{2}-y^{2}} \mathrm{~d} y\right) \mathrm{d} x \\
& =\int_{-a}^{a}\left(\int_{-\sqrt{a^{2}-x^{2}}}^{\sqrt{a^{2}-x^{2}}} \sqrt{1-\frac{y^{2}}{a^{2}-x^{2}}} \sqrt{a^{2}-x^{2}} \mathrm{~d} y\right) \mathrm{d} x
\end{aligned}
$$

Now let's make the substitution

$$
\begin{array}{r}
t=\frac{y}{\sqrt{a^{2}-x^{2}}} \quad \text { so that } \quad d t=\frac{d y}{\sqrt{a^{2}-x^{2}}} \\
\begin{array}{r}
\operatorname{vol}\left(B^{+}\right)=\int_{-a}^{a}\left(\int_{-1}^{1} \sqrt{1-t^{2}}\left(a^{2}-x^{2}\right) \mathrm{d} t\right) \mathrm{d} x \\
=\int_{-a}^{a}\left(a^{2}-x^{2}\right)\left(\int_{-1}^{1} \sqrt{1-t^{2}} \mathrm{~d} t\right) \mathrm{d} x
\end{array}
\end{array}
$$

Now let's make the substitution

$$
\begin{aligned}
& t=\sin u \quad \text { so that } \quad d t=\cos u d u \\
& \operatorname{vol}\left(B^{+}\right)=\int_{-a}^{a}\left(a^{2}-x^{2}\right)\left(\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos ^{2} u \mathrm{~d} u\right) \mathrm{d} x \\
&=\int_{-a}^{a}\left(a^{2}-x^{2}\right) \frac{\pi}{2} \mathrm{~d} x \\
&=\frac{\pi}{2}\left[a^{2} x-\frac{x^{3}}{3}\right]_{-a}^{a} \\
&=\pi\left(a^{3}-\frac{a^{3}}{3}\right) \\
&=\frac{2 \pi a^{3}}{3}
\end{aligned}
$$

Therefore, we get the expected answer

$$
\operatorname{vol}(B)=2 \operatorname{vol}\left(B^{+}\right)=\frac{4 \pi a^{3}}{3}
$$

Example 4. Now consider the example of a cone whose base radius is a and whose height is b. Put the central axis along the x-axis and the base in the yz-plane. In the $x y$-plane we get an equilateral triangle of height b and base $2 a$. If we view this as a region of type 1, we have

$$
\gamma(x)=-a\left(1-\frac{x}{b}\right) \quad \text { and } \quad \delta(x)=a\left(1-\frac{x}{b}\right) .
$$

We want to integrate the function

$$
f: D \longrightarrow \mathbb{R}
$$

given by

$$
f(x, y)=\sqrt{a^{2}\left(1-\frac{x}{b}\right)^{2}-y^{2}}
$$

So half of the volume of the cone is

$$
\begin{aligned}
\int_{0}^{b}\left(\int_{-a\left(1-\frac{x}{b}\right)}^{a\left(1-\frac{x}{b}\right)} \sqrt{a^{2}\left(1-\frac{x}{b}\right)^{2}-y^{2}} \mathrm{~d} y\right) \mathrm{d} x & =\frac{\pi}{2} \int_{0}^{b} a^{2}\left(1-\frac{x}{b}\right)^{2} \mathrm{~d} x \\
& =\frac{\pi a^{2}}{2} \int_{0}^{b} 1-\frac{2 x}{b}+\frac{x^{2}}{b^{2}} \mathrm{~d} x \\
& =\frac{\pi a^{2}}{2}\left[x-\frac{x^{2}}{b}+\frac{x^{3}}{3 b^{2}}\right]_{0}^{b} \\
& =\frac{1}{6}\left(\pi a^{2} b\right)
\end{aligned}
$$

Therefore the volume is

$$
\frac{1}{3}\left(\pi a^{2} b\right)
$$

