DOUBLE INTEGRALS
BASED ON LECTURE NOTES BY JAMES MCKERNAN

Definition 1. Let S = [a,b] x [¢,d] C R? be a rectangle in the plane. A partition
P of S is a pair of sequences:
a=xg<x1<--<xTp=">b
c=yo<y << yYp,=d.
The mesh of P is
m(P) =max{x; —xi—1,y; —yi—1 |1 <i <k}
Now suppose we are given a function
f+9—R
Pick
Cij € Sij = [Ti—1,mi] X [Yj-1, Y]

Definition 2. The sum

n n

Tp = ZZf(@j)(mi —xi1) (Y — Yj-1),

i=1 j=1
is called a Riemann sum.

We will use the short hand notation
Al’i = X; — Tji—-1 and ij = yj — yjfl.

Definition 3. The function f: S — R is called integrable, with integral I, if for
every € > 0, we may find a 6 > 0 such that for every mesh P whose mesh size is
less than d, we have

|l —Tp| <e,

where Tp is any Riemann sum associated to P.

//Sﬂx,y)dxdyﬂ,

to mean that f is integrable with integral I.

We use a sneaky trick to integrate over regions other than rectangles. Suppose
that D is a bounded subset of the plane. Then we can find a rectangle S which
completely contains D.

We write

Definition 4. The indicator function of D C S is the function

1p: S —)R,
given by
1 ifxeD
=1 7
0 ifz¢D.

If 1p s integrable, then we say that the area of D is the integral

//S]lD(x,y) dz dy.

If 1p is not integrable, then D does not have an area.
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Example 5. Let
D= {(z,y) €[0,1] x [0,1][z,y € Q }.
Then D does not have an area.

Definition 6. If f: D — R is a function and D is bounded, then pick D C S C R?
a rectangle. Define

f: 8 —R,
by the rule

0 otherwise.

fla) = {f(sc) ifreD

We say that f is integrable over D if f is integrable over S. In this case

/ /D fapdedy = [ /S F(a, y) da dy.

Proposition 7. Let D C R? be a bounded subset and let f: D — R and g: D —
R be two integrable functions. Let \ be a scalar.
Then

(1) f+ g is integrable over D and

//ljf(x,y)-l-g(x,y)dxdy://Df(ar,y)dacdy—s—//Dg(x,y)dxdy.

(2) Af is integrable over D and

// /\f(;z:,y)d:rdy:/\// f(z,y) dz dy.

3) If f(z,y) < g(z,y) for any (z,y) € D, then

//fxydxdy<// (z,y) dz dy.

(4) |f] is integrable over D and

/] ten sl < [[ 5l aay

It is straightforward to integrate continuous functions over regions of three spe-
cial types:

Definition 8. A bounded subset D C R? is an elementary region if it is one of
three types:
Type 1:
D={(zy) eR*|a <z <b(z) <y<d@)},
where v: [a,b] — R and 0 [a,b] — R are continuous functions.
Type 2:
D={(z,y) eR’|c<y <d.aly) <z <p)}
where a: [¢,d] — R and B: [¢,d] — R are continuous functions.
Type 3: D is both type 1 and 2.

Theorem 9. Let D C R? be an elementary region and let f: D — R be a contin-
wous function.
Then



(1) If D is of type 1, then

J[ steasay = [ b ( ::)f(x ) dy) d.

(2) If D if of type 2, then

J[ s asay= | ' ( / fy(j)f(ay) dx) dy.

Example 10. Let D be the region bounded by the lines x = 0, y = 4 and the
parabola y = 2. Let f: D — R be the function given by f(x,y) = 2 + y>.

If we view D as a region of type 1, then we get
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On the other hand, if we view D as a region of type 2, then we get

//Df(ac,y)dasdy:/o4 (/Oﬁm2+y2dx> dy
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