
Double integrals
Based on lecture notes by James McKernan

Definition 1. Let S = [a, b]× [c, d] ⊂ R2 be a rectangle in the plane. A partition
P of S is a pair of sequences:

a = x0 < x1 < · · · < xn = b

c = y0 < y1 < · · · < yn = d.

The mesh of P is

m(P) = max{xi − xi−1, yi − yi−1 | 1 ≤ i ≤ k }.

Now suppose we are given a function

f : S −→ R

Pick

~cij ∈ Sij = [xi−1, xi]× [yj−1, yj ].

Definition 2. The sum

TP =

n∑
i=1

n∑
j=1

f(~cij)(xi − xi−1)(yj − yj−1),

is called a Riemann sum.

We will use the short hand notation

∆xi = xi − xi−1 and ∆yj = yj − yj−1.

Definition 3. The function f : S −→ R is called integrable, with integral I, if for
every ε > 0, we may find a δ > 0 such that for every mesh P whose mesh size is
less than δ, we have

|I − TP | < ε,

where TP is any Riemann sum associated to P.

We write ∫∫
S

f(x, y) dx dy = I,

to mean that f is integrable with integral I.
We use a sneaky trick to integrate over regions other than rectangles. Suppose

that D is a bounded subset of the plane. Then we can find a rectangle S which
completely contains D.

Definition 4. The indicator function of D ⊂ S is the function

1D : S −→ R,

given by

1D(x) =

{
1 if x ∈ D
0 if x /∈ D.

If 1D is integrable, then we say that the area of D is the integral∫∫
S

1D(x, y) dxdy.

If 1D is not integrable, then D does not have an area.
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Example 5. Let

D = { (x, y) ∈ [0, 1]× [0, 1] |x, y ∈ Q }.
Then D does not have an area.

Definition 6. If f : D −→ R is a function and D is bounded, then pick D ⊂ S ⊂ R2

a rectangle. Define

f̃ : S −→ R,
by the rule

f̃(x) =

{
f(x) if x ∈ D
0 otherwise.

We say that f is integrable over D if f̃ is integrable over S. In this case∫∫
D

f(x, y) dxdy =

∫∫
S

f̃(x, y) dx dy.

Proposition 7. Let D ⊂ R2 be a bounded subset and let f : D −→ R and g : D −→
R be two integrable functions. Let λ be a scalar.

Then

(1) f + g is integrable over D and∫∫
D

f(x, y) + g(x, y) dxdy =

∫∫
D

f(x, y) dxdy +

∫∫
D

g(x, y) dxdy.

(2) λf is integrable over D and∫∫
D

λf(x, y) dx dy = λ

∫∫
D

f(x, y) dxdy.

(3) If f(x, y) ≤ g(x, y) for any (x, y) ∈ D, then∫∫
D

f(x, y) dxdy ≤
∫∫

D

g(x, y) dxdy.

(4) |f | is integrable over D and

|
∫∫

D

f(x, y) dx dy| ≤
∫∫

D

|f(x, y)|dxdy.

It is straightforward to integrate continuous functions over regions of three spe-
cial types:

Definition 8. A bounded subset D ⊂ R2 is an elementary region if it is one of
three types:

Type 1:

D = { (x, y) ∈ R2 | a ≤ x ≤ b, γ(x) ≤ y ≤ δ(x) },
where γ : [a, b] −→ R and δ : [a, b] −→ R are continuous functions.

Type 2:

D = { (x, y) ∈ R2 | c ≤ y ≤ d, α(y) ≤ x ≤ β(y) },
where α : [c, d] −→ R and β : [c, d] −→ R are continuous functions.

Type 3: D is both type 1 and 2.

Theorem 9. Let D ⊂ R2 be an elementary region and let f : D −→ R be a contin-
uous function.

Then
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(1) If D is of type 1, then∫∫
D

f(x, y) dxdy =

∫ b

a

(∫ δ(x)

γ(x)

f(x, y) dy

)
dx.

(2) If D if of type 2, then∫∫
D

f(x, y) dxdy =

∫ d

c

(∫ β(y)

α(y)

f(x, y) dx

)
dy.

Example 10. Let D be the region bounded by the lines x = 0, y = 4 and the
parabola y = x2. Let f : D −→ R be the function given by f(x, y) = x2 + y2.

If we view D as a region of type 1, then we get∫∫
D

f(x, y) dxdy =

∫ 2

0

(∫ 4

x2

x2 + y2 dy

)
dx

=

∫ 2

0

[
x2y +

y3

3

]4
x2

dx

=

∫ 2

0

4x2 +
26

3
− x4 − x6

3
dx

=

[
4x3

3
+

26x

3
− x5

5
− x7

3 · 7

]2
0

=
25

3
+

27

3
− 25

5
− 27

3 · 7

=
26

3 · 5
+

28

7

= 26
(

1

3 · 5
+

22

7

)
.

On the other hand, if we view D as a region of type 2, then we get∫∫
D

f(x, y) dxdy =

∫ 4

0

(∫ √y
0

x2 + y2 dx

)
dy

=

∫ 4

0

[
x3

3
+ xy2

]√y
0

dy

=

∫ 4

0

y3/2

3
+ y5/2 dy

=

[
2y5/2

3 · 5
+

2y7/2

7

]4
0

=
26

3 · 5
+

28

7

= 26
(

1

3 · 5
+

22

7

)
.


