## Double integrals

Based on lecture notes by James McKernan
Definition 1. Let $S=[a, b] \times[c, d] \subset \mathbb{R}^{2}$ be a rectangle in the plane. A partition $\mathcal{P}$ of $S$ is a pair of sequences:

$$
\begin{aligned}
& a=x_{0}<x_{1}<\cdots<x_{n}=b \\
& c=y_{0}<y_{1}<\cdots<y_{n}=d
\end{aligned}
$$

The mesh of $\mathcal{P}$ is

$$
m(\mathcal{P})=\max \left\{x_{i}-x_{i-1}, y_{i}-y_{i-1} \mid 1 \leq i \leq k\right\}
$$

Now suppose we are given a function

$$
f: S \longrightarrow \mathbb{R}
$$

Pick

$$
\vec{c}_{i j} \in S_{i j}=\left[x_{i-1}, x_{i}\right] \times\left[y_{j-1}, y_{j}\right]
$$

Definition 2. The sum

$$
T_{\mathcal{P}}=\sum_{i=1}^{n} \sum_{j=1}^{n} f\left(\vec{c}_{i j}\right)\left(x_{i}-x_{i-1}\right)\left(y_{j}-y_{j-1}\right)
$$

is called a Riemann sum.
We will use the short hand notation

$$
\Delta x_{i}=x_{i}-x_{i-1} \quad \text { and } \quad \Delta y_{j}=y_{j}-y_{j-1}
$$

Definition 3. The function $f: S \longrightarrow \mathbb{R}$ is called integrable, with integral $I$, if for every $\epsilon>0$, we may find a $\delta>0$ such that for every mesh $\mathcal{P}$ whose mesh size is less than $\delta$, we have

$$
\left|I-T_{\mathcal{P}}\right|<\epsilon
$$

where $T_{\mathcal{P}}$ is any Riemann sum associated to $\mathcal{P}$.
We write

$$
\iint_{S} f(x, y) \mathrm{d} x \mathrm{~d} y=I
$$

to mean that $f$ is integrable with integral $I$.
We use a sneaky trick to integrate over regions other than rectangles. Suppose that $D$ is a bounded subset of the plane. Then we can find a rectangle $S$ which completely contains $D$.

Definition 4. The indicator function of $D \subset S$ is the function

$$
\mathbb{1}_{D}: S \longrightarrow \mathbb{R}
$$

given by

$$
\mathbb{1}_{D}(x)= \begin{cases}1 & \text { if } x \in D \\ 0 & \text { if } x \notin D\end{cases}
$$

If $\mathbb{1}_{D}$ is integrable, then we say that the area of $D$ is the integral

$$
\iint_{S} \mathbb{1}_{D}(x, y) \mathrm{d} x \mathrm{~d} y
$$

If $\mathbb{1}_{D}$ is not integrable, then $D$ does not have an area.

Example 5. Let

$$
D=\{(x, y) \in[0,1] \times[0,1] \mid x, y \in \mathbb{Q}\}
$$

Then $D$ does not have an area.
Definition 6. If $f: D \longrightarrow \mathbb{R}$ is a function and $D$ is bounded, then pick $D \subset S \subset \mathbb{R}^{2}$ a rectangle. Define

$$
\tilde{f}: S \longrightarrow \mathbb{R}
$$

by the rule

$$
\tilde{f}(x)= \begin{cases}f(x) & \text { if } x \in D \\ 0 & \text { otherwise }\end{cases}
$$

We say that $f$ is integrable over $D$ if $\tilde{f}$ is integrable over $S$. In this case

$$
\iint_{D} f(x, y) \mathrm{d} x \mathrm{~d} y=\iint_{S} \tilde{f}(x, y) \mathrm{d} x \mathrm{~d} y
$$

Proposition 7. Let $D \subset \mathbb{R}^{2}$ be a bounded subset and let $f: D \longrightarrow \mathbb{R}$ and $g: D \longrightarrow$ $\mathbb{R}$ be two integrable functions. Let $\lambda$ be a scalar.

Then
(1) $f+g$ is integrable over $D$ and

$$
\iint_{D} f(x, y)+g(x, y) \mathrm{d} x \mathrm{~d} y=\iint_{D} f(x, y) \mathrm{d} x \mathrm{~d} y+\iint_{D} g(x, y) \mathrm{d} x \mathrm{~d} y .
$$

(2) $\lambda f$ is integrable over $D$ and

$$
\iint_{D} \lambda f(x, y) \mathrm{d} x \mathrm{~d} y=\lambda \iint_{D} f(x, y) \mathrm{d} x \mathrm{~d} y
$$

(3) If $f(x, y) \leq g(x, y)$ for any $(x, y) \in D$, then

$$
\iint_{D} f(x, y) \mathrm{d} x \mathrm{~d} y \leq \iint_{D} g(x, y) \mathrm{d} x \mathrm{~d} y
$$

(4) $|f|$ is integrable over $D$ and

$$
\left|\iint_{D} f(x, y) \mathrm{d} x \mathrm{~d} y\right| \leq \iint_{D}|f(x, y)| \mathrm{d} x \mathrm{~d} y
$$

It is straightforward to integrate continuous functions over regions of three special types:

Definition 8. $A$ bounded subset $D \subset \mathbb{R}^{2}$ is an elementary region if it is one of three types:

Type 1:

$$
D=\left\{(x, y) \in \mathbb{R}^{2} \mid a \leq x \leq b, \gamma(x) \leq y \leq \delta(x)\right\}
$$

where $\gamma:[a, b] \longrightarrow \mathbb{R}$ and $\delta:[a, b] \longrightarrow \mathbb{R}$ are continuous functions.
Type 2:

$$
D=\left\{(x, y) \in \mathbb{R}^{2} \mid c \leq y \leq d, \alpha(y) \leq x \leq \beta(y)\right\}
$$

where $\alpha:[c, d] \longrightarrow \mathbb{R}$ and $\beta:[c, d] \longrightarrow \mathbb{R}$ are continuous functions.
Type 3: $D$ is both type 1 and 2.
Theorem 9. Let $D \subset \mathbb{R}^{2}$ be an elementary region and let $f: D \longrightarrow \mathbb{R}$ be a continuous function.

Then
(1) If $D$ is of type 1 , then

$$
\iint_{D} f(x, y) \mathrm{d} x \mathrm{~d} y=\int_{a}^{b}\left(\int_{\gamma(x)}^{\delta(x)} f(x, y) \mathrm{d} y\right) \mathrm{d} x
$$

(2) If $D$ if of type 2, then

$$
\iint_{D} f(x, y) \mathrm{d} x \mathrm{~d} y=\int_{c}^{d}\left(\int_{\alpha(y)}^{\beta(y)} f(x, y) \mathrm{d} x\right) \mathrm{d} y
$$

Example 10. Let $D$ be the region bounded by the lines $x=0, y=4$ and the parabola $y=x^{2}$. Let $f: D \longrightarrow \mathbb{R}$ be the function given by $f(x, y)=x^{2}+y^{2}$.

If we view $D$ as a region of type 1 , then we get

$$
\begin{aligned}
\iint_{D} f(x, y) \mathrm{d} x \mathrm{~d} y & =\int_{0}^{2}\left(\int_{x^{2}}^{4} x^{2}+y^{2} \mathrm{~d} y\right) \mathrm{d} x \\
& =\int_{0}^{2}\left[x^{2} y+\frac{y^{3}}{3}\right]_{x^{2}}^{4} \mathrm{~d} x \\
& =\int_{0}^{2} 4 x^{2}+\frac{2^{6}}{3}-x^{4}-\frac{x^{6}}{3} \mathrm{~d} x \\
& =\left[\frac{4 x^{3}}{3}+\frac{2^{6} x}{3}-\frac{x^{5}}{5}-\frac{x^{7}}{3 \cdot 7}\right]_{0}^{2} \\
& =\frac{2^{5}}{3}+\frac{2^{7}}{3}-\frac{2^{5}}{5}-\frac{2^{7}}{3 \cdot 7} \\
& =\frac{2^{6}}{3 \cdot 5}+\frac{2^{8}}{7} \\
& =2^{6}\left(\frac{1}{3 \cdot 5}+\frac{2^{2}}{7}\right)
\end{aligned}
$$

On the other hand, if we view $D$ as a region of type 2 , then we get

$$
\begin{aligned}
\iint_{D} f(x, y) \mathrm{d} x \mathrm{~d} y & =\int_{0}^{4}\left(\int_{0}^{\sqrt{y}} x^{2}+y^{2} \mathrm{~d} x\right) \mathrm{d} y \\
& =\int_{0}^{4}\left[\frac{x^{3}}{3}+x y^{2}\right]_{0}^{\sqrt{y}} \mathrm{~d} y \\
& =\int_{0}^{4} \frac{y^{3 / 2}}{3}+y^{5 / 2} \mathrm{~d} y \\
& =\left[\frac{2 y^{5 / 2}}{3 \cdot 5}+\frac{2 y^{7 / 2}}{7}\right]_{0}^{4} \\
& =\frac{2^{6}}{3 \cdot 5}+\frac{2^{8}}{7} \\
& =2^{6}\left(\frac{1}{3 \cdot 5}+\frac{2^{2}}{7}\right)
\end{aligned}
$$

