Maxima and minima: II
 Based on lecture notes by James McKernan

To see how to maximize and minimize a function on the boundary, let's conside a concrete example.

Let

$$
K=\left\{(x, y) \mid x^{2}+y^{2} \leq 2\right\}
$$

Then K is compact. Let

$$
f: K \longrightarrow \mathbb{R}
$$

be the function $f(x, y)=x y$. Then f is continuous and so f achieves its maximum and minimum.
I. Let's first consider the interior points. Then

$$
\nabla f(x, y)=(y, x)
$$

so that $(0,0)$ is the only critical point. The Hessian of f is

$$
H f(x, y)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

$d_{1}=0$ and $d_{2}=-1 \neq 0$ so that $(0,0)$ is a saddle point.
It follows that the maxima and minima of f are on the boundary, that is, the set of points

$$
C=\left\{(x, y) \mid x^{2}+y^{2}=2\right\}
$$

II. Let $g: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ be the function $g(x, y)=x^{2}+y^{2}$. Then the circle C is a level curve of g. The original problem asks to maximize and minimize

$$
f(x, y)=x y \quad \text { subject to } \quad g(x, y)=x^{2}+y^{2}=2
$$

One way to proceed is to use the second equation to eliminate a variable. The method of Lagrange multipliers does exactly the opposite. Instead of eliminating a variable we add one more variable, traditionally called λ.

In general, say we want to maximize $f(x, y)$ subject to $g(x, y)=c$. Then at a maximum point p it won't necessarily be the case that $\nabla f(p)=0$, but it will be the case that the directional derivative $\nabla f(p) \cdot \hat{n}$ will be zero for any \hat{n} that is in the direction of the level set $g(x, y)=c$. Since ∇g is orthogonal to this level set, at a maximum point p it will be the case that $\nabla f(p)$ and $\nabla g(p)$ will be at the same direction, or that $\nabla f(p)=\lambda \nabla g(p)$ for some λ.

Consider the function

$$
h(x, y, \lambda)=f(x, y)-\lambda(g(x, y)-c)
$$

Let's see what happens at points where $\nabla h=0$. Taking the derivatives with respect to x and y and equating to zero yields

$$
\nabla f(x, y)-\lambda \nabla g(x, y)=0
$$

which is what we're looking for. Taking the derivative with respect to λ and equating to zero yields

$$
g(x, y)=c
$$

which is the second condition we need. Hence finding a point in which $\nabla h=0$ is the same as solving our problem.

So now let's maximize and minimize

$$
h(x, y, \lambda)=f(x, y)-\lambda(g(x, y)-2)=x y-\lambda\left(x^{2}+y^{2}-2\right)
$$

We find the critical points of $h(x, y, \lambda)$:

$$
\begin{aligned}
& y=2 \lambda x \\
& x=2 \lambda y \\
& 2=x^{2}+y^{2} .
\end{aligned}
$$

First note that if $x=0$ then $y=0$ and $x^{2}+y^{2}=0 \neq 2$, impossible. So $x \neq 0$. Similarly one can check that $y \neq 0$ and $\lambda \neq 0$. Divide the first equation by the second:

$$
\frac{y}{x}=\frac{x}{y},
$$

so that $y^{2}=x^{2}$. As $x^{2}+y^{2}=2$ it follows that $x^{2}=y^{2}=1$. So $x= \pm 1$ and $y= \pm 1$. This gives four potential points $(1,1),(-1,1),(1,-1),(-1,-1)$. Then the maximum value of f is 1 , and this occurs at the first and the last point. The minimum value of f is -1 , and this occurs at the second and the third point.

One can also try to parametrize the boundary:

$$
\vec{r}(t)=\sqrt{2}(\cos t, \sin t) .
$$

So we maximize the composition

$$
h:[0,2 \pi] \longrightarrow \mathbb{R},
$$

where $h(t)=2 \cos t \sin t$. As $I=[0,2 \pi]$ is compact, h has a maximum and minimum on I. When $h^{\prime}(t)=0$, we get

$$
\cos ^{2} t-\sin ^{2} t=0
$$

Note that the LHS is $\cos 2 t$, so we want

$$
\cos 2 t=0
$$

It follows that $2 t=\pi / 2+2 m \pi$, so that

$$
t=\pi / 4, \quad 3 \pi / 4, \quad 5 \pi / 4, \quad \text { and } \quad 7 \pi / 4 .
$$

These give the four points we had before.
What is the closest point to the origin on the surface

$$
F=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x \geq 0, y \geq 0, z \geq 0, x y z=p\right\} ?
$$

So we want to minimize the distance to the origin on F. The first trick is to minimize the square of the distance. In other words, we are trying to minimize $f(x, y, z)=x^{2}+y^{2}+z^{2}$ on the surface

$$
F=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x \geq 0, y \geq 0, z \geq 0, x y z=p\right\} .
$$

In words, given three numbers $x \geq, y \geq 0$ and $z \geq 0$ whose product is $p>0$, what is the minimum value of $x^{2}+y^{2}+z^{2}$?

Now F is closed but it is not bounded, so it is not even clear that the minimum exists.

Let's use the method of Lagrange multipliers. Let

$$
h: \mathbb{R}^{4} \longrightarrow \mathbb{R}
$$

be the function

$$
h(x, y, z, \lambda)=x^{2}+y^{2}+z^{2}-\lambda(x y z-p) .
$$

We look for the critical points of h :

$$
\begin{aligned}
2 x & =\lambda y z \\
2 y & =\lambda x z \\
2 z & =\lambda x y \\
p & =x y z .
\end{aligned}
$$

Once again, it is not possible for any of the variables to be zero. Taking the product of the first three equations, we get

$$
8(x y z)=\lambda^{3}\left(x^{2} y^{2} z^{2}\right)
$$

So, dividing by $x y z$ and using the last equation, we get

$$
8=\lambda^{3} p
$$

that is

$$
\lambda=\frac{2}{p^{1 / 3}}
$$

Taking the product of the first two equations, and dividing by $x y$, we get

$$
4=\lambda^{2} z^{2}
$$

so that

$$
z=p^{1 / 3}
$$

So $h(x, y, z, \lambda)$ has a critical point at

$$
(x, y, z, \lambda)=\left(p^{1 / 3}, p^{1 / 3}, p^{1 / 3}, \frac{2}{p^{1 / 3}}\right)
$$

We check that the point

$$
(x, y, z)=\left(p^{1 / 3}, p^{1 / 3}, p^{1 / 3}\right)
$$

is a minimum of $x^{2}+y^{2}+z^{2}$ subject to the constraint $x y z=p$. At this point the sum of the squares is

$$
3 p^{2 / 3}
$$

Suppose that $x \geq 2 p^{1 / 3}$. Then the sum of the squares is at least $4 p^{2 / 3}$. Similarly if $y \geq 2 p^{1 / 3}$ or $z \geq 2 p^{1 / 3}$. On the other hand, the set

$$
K=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x \in\left[0,2 p^{1 / 3}\right], y \in\left[0,2 p^{1 / 3}\right], z \in\left[0,2 p^{1 / 3}\right], x y z=p\right\}
$$

is closed and bounded, so that f achieves it minimum on this set, which we have already decided is at

$$
(x, y, z)=\left(p^{1 / 3}, p^{1 / 3}, p^{1 / 3}\right)
$$

since f is larger on the boundary. Putting all of this together, the point

$$
(x, y, z)=\left(p^{1 / 3}, p^{1 / 3}, p^{1 / 3}\right)
$$

is a point where the sum of the squares is a minimum.
Here is another such problem. Find the closest point to the origin which also belongs to the cone

$$
x^{2}+y^{2}=z^{2}
$$

and to the plane

$$
x+y+z=3
$$

As before, we minimize $f(x, y, z)=x^{2}+y^{2}+z^{2}$ subject to $g_{1}(x, y, z)=x^{2}+y^{2}-z^{2}=$ 0 and $g_{2}(x, y, z)=x+y+z=3$. Introduce a new function, with two new variables λ_{1} and λ_{2},

$$
h: \mathbb{R}^{5} \longrightarrow \mathbb{R}
$$

given by

$$
\begin{aligned}
h\left(x, y, z, \lambda_{1}, \lambda_{2}\right) & =f(x, y, z)-\lambda_{1} g_{1}(x, y, z)-\lambda_{2} g_{2}(x, y, z) \\
& =x^{2}+y^{2}+z^{2}-\lambda_{1}\left(x^{2}+y^{2}-z^{2}\right)-\lambda_{2}(x+y+z-3) .
\end{aligned}
$$

We find the critical points of h :

$$
\begin{aligned}
2 x & =2 \lambda_{1} x+\lambda_{2} \\
2 y & =2 \lambda_{1} y+\lambda_{2} \\
2 z & =-2 \lambda_{1} z+\lambda_{2} \\
z^{2} & =x^{2}+y^{2} \\
3 & =x+y+z .
\end{aligned}
$$

Suppose we substract the first equation from the second:

$$
y-x=\lambda_{1}(y-x)
$$

So either $x=y$ or $\lambda_{1}=1$. Suppose $x \neq y$. Then $\lambda_{1}=1$ and $\lambda_{2}=0$. In this case $z=-z$, so that $z=0$. But then $x^{2}+y^{2}=0$ and so $x=y=0$, which is not possible.

It follows that $x=y$, in which case $z= \pm \sqrt{2} x$ and

$$
(2 \pm \sqrt{2}) x=3
$$

So

$$
x=\frac{3}{2 \pm \sqrt{2}}=\frac{3(2 \mp \sqrt{2})}{2} .
$$

This gives us two critical points:

$$
\begin{aligned}
& p=\left(\frac{3(2-\sqrt{2})}{2}, \frac{3(2-\sqrt{2})}{2}, \frac{3 \sqrt{2}(2-\sqrt{2})}{2}\right) \\
& q=\left(\frac{3(2+\sqrt{2})}{2}, \frac{3(2+\sqrt{2})}{2},-\frac{3 \sqrt{2}(2-\sqrt{2})}{2}\right) .
\end{aligned}
$$

Of the two, clearly the first is closest to the origin.
To finish, we had better show that this point is the closest to the origin on the whole locus

$$
F=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}=z^{2}, x+y+z=3\right\}
$$

Let

$$
K=\left\{(x, y, z) \in F \mid x^{2}+y^{2}+z^{2} \leq 25\right\}
$$

Then K is closed and bounded, whence compact. So f achieves its minimum somewhere on K, and so it must achieve its minimum at p. Clearly outside f is at least 25 on $F \backslash K$, and so f is a minimum at p on the whole of F.

