
The dot product
Based on lecture notes by James McKernan

Blackboard 1. Let ~v, ~w ∈ R3. Their dot product is

~v · ~w = v1w1 + v2w2 + v3w3.

Same in R2.

Example 2. If ~v = (1,−2,−1) and ~w = (2, 1,−3) then

~v · ~w = 1 · 2 + (−2) · 1 + (−1) · (−3) = 2− 2 + 3 = 3.

Lemma 3. Let ~u,~v, ~w ∈ R3 and let λ ∈ R.
(1) (~u+ ~v) · ~w = ~u · ~w + ~v · ~w.
(2) ~v · ~w = ~w · ~v.
(3) (λ~v) · ~w = λ(~v · ~w).

(4) ~v · ~v = 0 if and only if ~v = ~0.

Proof of (4).

~v · ~v = v21 + v22 + v23 = ‖~v‖2,

which is zero iff ~v = ~0. �

Blackboard 4. Exercise: calculate ~v · ~w in terms of the norms of ~v+ ~w and ~v− ~w.

(~v + ~w) · (~v + ~w) = ~v · ~v + 2~v · ~w + ~w · ~w
(~v − ~w) · (~v − ~w) = ~v · ~v − 2~v · ~w + ~w · ~w.

Subtracting and dividing by 4 we get

~v · ~w =
1

4
((~v + ~w) · (~v + ~w)− (~v − ~w) · (~v − ~w))

=
1

4
(‖~v + ~w‖2 − ‖~v − ~w‖2).

Given two non-zero vectors ~v and ~w in space, note that we can define the angle
θ between ~v and ~w. ~v and ~w lie in at least one plane (which is in fact unique, unless
~v and ~w are parallel). Now just measure the angle θ between the ~v and ~w in this
plane. By convention we always take 0 ≤ θ ≤ π.

Theorem 5. If ~v and ~w are any two non-zero vectors in R3, then

~v · ~w = ‖~v‖ ‖~w‖ cos θ.

Proof. Apply the law of cosines to the triangle with sides parallel to ~v, ~w and ~v− ~w:

‖~v − ~w‖2 = ‖~v‖2 + ‖~w‖2 − 2‖~v‖‖~w‖ cos θ.

Expand the LHS:

‖~v‖2 − 2~v · ~w + ‖~w‖2 = ‖~v‖2 + ‖~w‖2 − 2‖~v‖‖~w‖ cos θ.

Canceling the common terms ‖~v‖2 and ‖~w‖2 from both sides, and dividing by −2,
we get the desired formula. �

We can use (5) to find the angle between two vectors:
1



2

Example 6. Let ~v = −ı̂+ k̂ and ~w = ı̂+ ̂. Then

−1 = ~v · ~w = ‖~v‖‖~w‖ cos θ = 2 cos θ.

Therefore cos θ = −1/2 and so θ = 2π/3.

Blackboard 7. We say that two vectors ~v and ~w in R3 are orthogonal if ~v · ~w = 0.

If neither ~v nor ~w are the zero vector, and ~v · ~w = 0 then the angle between ~v
and ~w is a right angle. By our convention, the zero vector is orthogonal to every
vector.

Example 8. ı̂, ̂ and k̂ are pairwise orthogonal.
(x, y, z) is orthogonal to (y,−x, 0).

Given two vectors ~v and ~w, we can project ~v onto ~w. The resulting vector is
called the projection of ~v onto ~w.

Blackboard 9. If ~w 6= ~0 then proj~w~v is the unique vector that is parallel to ~w and
such that ~v − proj~w~v is orthogonal to ~w.

For example, if ~F is a force and ~w is a direction, then the projection of ~F onto
~w is the force in the direction of ~w.

Blackboard 10. As proj~w~v is parallel to ~w, we have

proj~w~v = λ~w,

for some scalar λ. Let’s determine λ. Let’s deal with the case that λ ≥ 0 (so that
the angle θ between ~v and ~w is between 0 and π/2). If we take the norm of both
sides, we get

‖proj~w~v‖ = ‖λ~w‖ = λ‖~w‖,
(note that λ ≥ 0), so that

λ =
‖proj~w~v‖
‖~w‖

.

But

cos θ =
‖proj~w~v‖
‖~v‖

,

so that

‖proj~w~v‖ = ‖~v‖ cos θ.

Putting all of this together we get

λ =
‖~v‖ cos θ

‖~w‖

=
‖~v‖‖~w‖ cos θ

‖~w‖2

=
~v · ~w
‖~w‖2

.

There are a number of ways to deal with the case when λ < 0 (so that θ > π/2).
One can carry out a similar analysis to the one given above. Here is another way.



3

Blackboard 11. Note that the angle φ between ~w and ~u = −~v is equal to π − θ <
π/2. By what we already proved

proj~w~u =
~u · ~w
‖~w‖2

~w.

But proj~w~u = −proj~w~v and ~u · ~w = −~v · ~w, so we get the same formula in the end.

To summarize:

Theorem 12. If ~v and ~w are two vectors in R3, where ~w is not zero, then

proj~w~v =

(
~v · ~w
‖~w‖2

)
~w.

Blackboard 13. Recall that ŵ = 1
|~w| ~w is the direction of ~w, and that α(~v · ~w) =

~v · (α~w).

proj~w~v =

(
~v · ~w
‖~w‖2

)
~w

=

(
~v · ~w

‖~w‖

)
~w

|~w‖
= (~v · ŵ)ŵ.

Example 14. Find the distance d between the line l containing the points P1 =
(1,−1, 2) and P2 = (4, 1, 0) and the point Q = (3, 2, 4).

Suppose that R is the closest point on the line l to the point Q. Note that
−−→
QR

is orthogonal to the direction
−−−→
P1P2 of the line. So we want the length of the vector−−→

P1Q− proj−−−→
P1P2

−−→
P1Q., that is, we want

d = ‖
−−→
P1Q− proj−−−→

P1P2

−−→
P1Q‖.

Now
−−→
P1Q = (2, 3, 2) and

−−−→
P1P2 = (3, 2,−2).

We have

‖
−−−→
P1P2‖2 = 32 + 22 + 22 = 17 and

−−−→
P1P2 ·

−−→
P1Q = 6 + 6− 4 = 8.

It follows that

proj−−−→
P1P2

−−→
P1Q =

8

17
(3, 2,−2).

Subtracting, we get

−−→
P1Q− proj−−−→

P1P2

−−→
P1Q = (2, 3, 2)− 8

17
(3, 2,−2) =

1

17
(10, 35, 50) =

5

17
(2, 7, 10).

Taking the length, we get

5

17
(22 + 72 + 102)1/2 ≈ 3.64.

Theorem 15. The angle subtended on the circumference of a circle by a diameter
of the circle is always a right angle.
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Proof. Suppose that P and Q are the two endpoints of a diameter of the circle and
that R is a point on the circumference. We want to show that the angle between−→
PR and

−−→
QR is a right angle.

Let O be the center of the circle. Then
−→
PR =

−−→
PO +

−−→
OR and

−−→
QR =

−−→
QO +

−−→
OR.

Note that
−−→
QO = −

−−→
PO. Therefore
−→
PR ·

−−→
QR = (

−−→
PO +

−−→
OR) · (

−−→
QO +

−−→
OR)

= (
−−→
PO +

−−→
OR) · (

−−→
OR−

−−→
PO)

= ‖
−−→
OR‖2 − ‖

−−→
PO‖2

= r2 − r2 = 0,

where r is the radius of the circle. It follows that
−→
PR and

−−→
QR are indeed orthogonal.
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