The dot product Based on lecture notes by James McKernan

Blackboard 1. Let $\vec{v}, \vec{w} \in \mathbb{R}^3$. Their dot product is

 $\vec{v} \cdot \vec{w} = v_1 w_1 + v_2 w_2 + v_3 w_3.$

Same in \mathbb{R}^2 .

Example 2. If
$$\vec{v} = (1, -2, -1)$$
 and $\vec{w} = (2, 1, -3)$ then

$$\vec{v} \cdot \vec{w} = 1 \cdot 2 + (-2) \cdot 1 + (-1) \cdot (-3) = 2 - 2 + 3 = 3.$$

Lemma 3. Let $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^3$ and let $\lambda \in \mathbb{R}$.

(1) $(\vec{u} + \vec{v}) \cdot \vec{w} = \vec{u} \cdot \vec{w} + \vec{v} \cdot \vec{w}.$ (2) $\vec{v} \cdot \vec{w} = \vec{w} \cdot \vec{v}.$ (3) $(\lambda \vec{v}) \cdot \vec{w} = \lambda (\vec{v} \cdot \vec{w}).$ (4) $\vec{v} \cdot \vec{v} = 0$ if and only if $\vec{v} = \vec{0}.$

Proof of (4).

$$\vec{v} \cdot \vec{v} = v_1^2 + v_2^2 + v_3^2 = \|\vec{v}\|^2,$$

which is zero iff $\vec{v} = \vec{0}$.

Blackboard 4. Exercise: calculate $\vec{v} \cdot \vec{w}$ in terms of the norms of $\vec{v} + \vec{w}$ and $\vec{v} - \vec{w}$.

$$\begin{aligned} (\vec{v} + \vec{w}) \cdot (\vec{v} + \vec{w}) &= \vec{v} \cdot \vec{v} + 2\vec{v} \cdot \vec{w} + \vec{w} \cdot \vec{w} \\ (\vec{v} - \vec{w}) \cdot (\vec{v} - \vec{w}) &= \vec{v} \cdot \vec{v} - 2\vec{v} \cdot \vec{w} + \vec{w} \cdot \vec{w} \end{aligned}$$

Subtracting and dividing by 4 we get

$$\begin{split} \vec{v} \cdot \vec{w} &= \frac{1}{4} \left((\vec{v} + \vec{w}) \cdot (\vec{v} + \vec{w}) - (\vec{v} - \vec{w}) \cdot (\vec{v} - \vec{w}) \right) \\ &= \frac{1}{4} (\|\vec{v} + \vec{w}\|^2 - \|\vec{v} - \vec{w}\|^2). \end{split}$$

Given two non-zero vectors \vec{v} and \vec{w} in space, note that we can define the angle θ between \vec{v} and \vec{w} . \vec{v} and \vec{w} lie in at least one plane (which is in fact unique, unless \vec{v} and \vec{w} are parallel). Now just measure the angle θ between the \vec{v} and \vec{w} in this plane. By convention we always take $0 \le \theta \le \pi$.

Theorem 5. If \vec{v} and \vec{w} are any two non-zero vectors in \mathbb{R}^3 , then

$$\vec{v} \cdot \vec{w} = \|\vec{v}\| \, \|\vec{w}\| \cos \theta.$$

Proof. Apply the law of cosines to the triangle with sides parallel to \vec{v} , \vec{w} and $\vec{v} - \vec{w}$:

$$\|\vec{v} - \vec{w}\|^2 = \|\vec{v}\|^2 + \|\vec{w}\|^2 - 2\|\vec{v}\| \|\vec{w}\| \cos\theta$$

Expand the LHS:

$$\|\vec{v}\|^2 - 2\vec{v}\cdot\vec{w} + \|\vec{w}\|^2 = \|\vec{v}\|^2 + \|\vec{w}\|^2 - 2\|\vec{v}\|\|\vec{w}\|\cos\theta$$

Canceling the common terms $\|\vec{v}\|^2$ and $\|\vec{w}\|^2$ from both sides, and dividing by -2, we get the desired formula.

We can use (5) to find the angle between two vectors:

Example 6. Let $\vec{v} = -\hat{i} + \hat{k}$ and $\vec{w} = \hat{i} + \hat{j}$. Then

$$-1 = \vec{v} \cdot \vec{w} = \|\vec{v}\| \|\vec{w}\| \cos \theta = 2\cos \theta.$$

Therefore $\cos \theta = -1/2$ and so $\theta = 2\pi/3$.

Blackboard 7. We say that two vectors \vec{v} and \vec{w} in \mathbb{R}^3 are orthogonal if $\vec{v} \cdot \vec{w} = 0$.

If neither \vec{v} nor \vec{w} are the zero vector, and $\vec{v} \cdot \vec{w} = 0$ then the angle between \vec{v} and \vec{w} is a right angle. By our convention, the zero vector is orthogonal to every vector.

Example 8. \hat{i} , \hat{j} and \hat{k} are pairwise orthogonal. (x, y, z) is orthogonal to (y, -x, 0).

Given two vectors \vec{v} and \vec{w} , we can project \vec{v} onto \vec{w} . The resulting vector is called the **projection** of \vec{v} onto \vec{w} .

Blackboard 9. If $\vec{w} \neq \vec{0}$ then $proj_{\vec{w}}\vec{v}$ is the unique vector that is parallel to \vec{w} and such that $\vec{v} - proj_{\vec{w}}\vec{v}$ is orthogonal to \vec{w} .

For example, if \vec{F} is a force and \vec{w} is a direction, then the projection of \vec{F} onto \vec{w} is the force in the direction of \vec{w} .

Blackboard 10. As $proj_{\vec{w}}\vec{v}$ is parallel to \vec{w} , we have

$$proj_{\vec{w}}\vec{v} = \lambda \vec{w},$$

for some scalar λ . Let's determine λ . Let's deal with the case that $\lambda \geq 0$ (so that the angle θ between \vec{v} and \vec{w} is between 0 and $\pi/2$). If we take the norm of both sides, we get

$$\|proj_{\vec{w}}\vec{v}\| = \|\lambda\vec{w}\| = \lambda\|\vec{w}\|,$$

(note that $\lambda \geq 0$), so that

$$\lambda = \frac{\|proj_{\vec{w}}\vec{v}\|}{\|\vec{w}\|}.$$

But

$$\cos \theta = \frac{\|proj_{\vec{w}}\vec{v}\|}{\|\vec{v}\|},$$

so that

$$\|proj_{\vec{w}}\vec{v}\| = \|\vec{v}\|\cos\theta.$$

Putting all of this together we get

$$\begin{split} \lambda &= \frac{\|\vec{v}\|\cos\theta}{\|\vec{w}\|} \\ &= \frac{\|\vec{v}\|\|\vec{w}\|\cos\theta}{\|\vec{w}\|^2} \\ &= \frac{\vec{v}\cdot\vec{w}}{\|\vec{w}\|^2}. \end{split}$$

There are a number of ways to deal with the case when $\lambda < 0$ (so that $\theta > \pi/2$). One can carry out a similar analysis to the one given above. Here is another way. **Blackboard 11.** Note that the angle ϕ between \vec{w} and $\vec{u} = -\vec{v}$ is equal to $\pi - \theta < \pi/2$. By what we already proved

$$proj_{\vec{w}}\vec{u} = \frac{\vec{u}\cdot\vec{w}}{\|\vec{w}\|^2}\vec{w}.$$

But $proj_{\vec{w}}\vec{u} = -proj_{\vec{w}}\vec{v}$ and $\vec{u} \cdot \vec{w} = -\vec{v} \cdot \vec{w}$, so we get the same formula in the end.

To summarize:

Theorem 12. If \vec{v} and \vec{w} are two vectors in \mathbb{R}^3 , where \vec{w} is not zero, then

$$proj_{\vec{w}}\vec{v} = \left(\frac{\vec{v}\cdot\vec{w}}{\|\vec{w}\|^2}\right)\vec{w}.$$

Blackboard 13. Recall that $\hat{w} = \frac{1}{|\vec{w}|}\vec{w}$ is the direction of \vec{w} , and that $\alpha(\vec{v} \cdot \vec{w}) = \vec{v} \cdot (\alpha \vec{w})$.

$$proj_{\vec{w}}\vec{v} = \left(\frac{\vec{v}\cdot\vec{w}}{\|\vec{w}\|^2}\right)\vec{w}$$
$$= \left(\vec{v}\cdot\frac{\vec{w}}{\|\vec{w}\|}\right)\frac{\vec{w}}{\|\vec{w}\|}$$
$$= (\vec{v}\cdot\hat{w})\hat{w}.$$

Example 14. Find the distance d between the line l containing the points $P_1 = (1, -1, 2)$ and $P_2 = (4, 1, 0)$ and the point Q = (3, 2, 4).

Suppose that R is the closest point on the line l to the point Q. Note that \overrightarrow{QR} is orthogonal to the direction $\overrightarrow{P_1P_2}$ of the line. So we want the length of the vector $\overrightarrow{P_1Q} - \operatorname{proj}_{\overrightarrow{P_1P_2}}\overrightarrow{P_1Q}$, that is, we want

$$d = \|\overrightarrow{P_1Q} - proj_{\overrightarrow{P_1P_2}}\overrightarrow{P_1Q}\|.$$

Now

$$\overrightarrow{P_1Q} = (2,3,2)$$
 and $\overrightarrow{P_1P_2} = (3,2,-2).$

 $We\ have$

$$\|\overrightarrow{P_1P_2}\|^2 = 3^2 + 2^2 + 2^2 = 17$$
 and $\overrightarrow{P_1P_2} \cdot \overrightarrow{P_1Q} = 6 + 6 - 4 = 8.$

It follows that

$$proj_{\overrightarrow{P_1P_2}}\overrightarrow{P_1Q} = \frac{8}{17}(3,2,-2).$$

Subtracting, we get

$$\overrightarrow{P_1Q} - proj_{\overrightarrow{P_1P_2}} \overrightarrow{P_1Q} = (2,3,2) - \frac{8}{17}(3,2,-2) = \frac{1}{17}(10,35,50) = \frac{5}{17}(2,7,10).$$

Taking the length, we get

$$\frac{5}{17}(2^2 + 7^2 + 10^2)^{1/2} \approx 3.64.$$

Theorem 15. The angle subtended on the circumference of a circle by a diameter of the circle is always a right angle.

Proof. Suppose that P and Q are the two endpoints of a diameter of the circle and that R is a point on the circumference. We want to show that the angle between \overrightarrow{PR} and \overrightarrow{QR} is a right angle.

Let O be the center of the circle. Then

Note that $\overrightarrow{QO} = -\overrightarrow{PO}$. Therefore $\overrightarrow{PR} = \overrightarrow{PO} + \overrightarrow{OR}$ and $\overrightarrow{QR} = \overrightarrow{QO} + \overrightarrow{OR}$. Note that $\overrightarrow{QO} = -\overrightarrow{PO}$. Therefore $\overrightarrow{PR} \cdot \overrightarrow{QR} = (\overrightarrow{PO} + \overrightarrow{OR}) \cdot (\overrightarrow{QO} + \overrightarrow{OR})$ $= (\overrightarrow{PO} + \overrightarrow{OR}) \cdot (\overrightarrow{OR} - \overrightarrow{PO})$ $= \|\overrightarrow{OR}\|^2 - \|\overrightarrow{PO}\|^2$ $= r^2 - r^2 = 0$,

where r is the radius of the circle. It follows that \overrightarrow{PR} and \overrightarrow{QR} are indeed orthogonal.