Taylor Polynomials
Based on lecture notes by James McKernan
If $f: A \longrightarrow \mathbb{R}^{m}$ is a differentiable function, and we are given a point $p \in A$, one can use the derivative to write down the best linear approximation to f at p. It is natural to wonder if one can do better using quadratic, or even higher degree, polynomials. We start with the one dimensional case.

Blackboard 1. Let $I \subset \mathbb{R}$ be an open interval and let $f: I \longrightarrow \mathbb{R}$ be a \mathcal{C}^{k}-function. Given a point $a \in I$, let

$$
\begin{aligned}
P_{a, k} f(x) & =f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\cdots+\frac{f^{k}(a)}{k!}(x-a)^{k} \\
& =\sum_{i=0}^{k} \frac{f^{i}(a)}{i!}(x-a)^{i} .
\end{aligned}
$$

Then $P_{a, k} f(x)$ is the k th Taylor polynomial of f, centred at a. The remainder is the difference

$$
R_{a, k} f(x)=f(x)-P_{a, k} f(x)
$$

Note that we have chosen $P_{a, k} f$ so that the first k derivatives of $P_{a, k} f$ at a are precisely the same as those of f. In other words, the first k derivatives at a of the remainder are all zero. The remainder is a measure of how good the Taylor polynomial approximates $f(x)$ and so it is very useful to estimate $R_{a, k}(x)$.
Theorem 2 (Taylor's Theorem with remainder). Let $I \subset \mathbb{R}$ be an open interval and let $f: I \longrightarrow \mathbb{R}$ be a \mathcal{C}^{k+1}-function. Let a and b be two points in I.

Then there is $a \xi$ between a and b, such that

$$
R_{a, k} f(b)=\frac{f^{k+1}(\xi)}{(k+1)!}(b-a)^{k+1}
$$

Before proving this we will need:
Theorem 3 (Mean value theorem). Let $f:[a, b] \rightarrow \mathbb{R}$ is continuous and differentiable at every point of (a, b), then we may find $c \in(a, b)$ such that

$$
f(b)-f(a)=f^{\prime}(c)(b-a)
$$

Proof of Theorem 2. If $a=b$ then take $\xi=a$. The result is clear in this case. Otherwise if we put

$$
M=\frac{R_{a, k} f(b)}{(b-a)^{k+1}},
$$

then

$$
R_{a, k} f(b)=M(b-a)^{k+1}
$$

We want to show that there is some ξ between a and b such that

$$
M=\frac{f^{k+1}(\xi)}{(k+1)!}
$$

If we let

$$
g(x)=R_{a, k}(x)-M(x-a)^{k+1}
$$

then

$$
g^{k+1}(x)=f^{k+1}(x)-(k+1)!M
$$

Then we are looking for ξ such that

$$
g^{k+1}(\xi)=0
$$

Now the first k derivatives of g at a are all zero,

$$
g^{i}(a)=0 \quad \text { for } \quad 0 \leq i \leq k
$$

By choice of M,

$$
g(b)=0
$$

So by the mean value theorem, applied to $g(x)$, there is a ξ_{1} between a and b such that

$$
g^{\prime}\left(\xi_{1}\right)=0
$$

Again by the mean value theorem, applied to $g^{\prime}(x)$, there is a ξ_{2} between a and ξ_{1} such that

$$
g^{\prime \prime}\left(\xi_{2}\right)=0
$$

Continuing in this way, by induction we may find $\xi_{i}, 1 \leq i \leq k+1$ between a and ξ_{i-1} such that

$$
g^{i}\left(\xi_{i}\right)=0
$$

Let $\xi=\xi_{k+1}$.
Let's try an easy example. Start with

$$
\begin{aligned}
f(x) & =x^{1 / 2} \\
f^{\prime}(x) & =\frac{1}{2} x^{-1 / 2} \\
f^{\prime \prime}(x) & =\frac{1}{2^{2}} x^{-3 / 2} \\
f^{\prime \prime \prime}(x) & =\frac{3}{2^{3}} x^{-5 / 2} \\
f^{4}(x) & =-\frac{1 \cdot 3 \cdot 5}{2^{4}} x^{-7 / 2} \\
f^{5}(x) & =\frac{1 \cdot 3 \cdot 5 \cdot 7}{2^{5}} x^{-9 / 2} \\
f^{6}(x) & =-\frac{1 \cdot 3 \cdot 5 \cdot 7 \cdot 9}{2^{6}} x^{-11 / 2} \\
f^{k}(x) & =(-1)^{k-1} \frac{(2 k-1)!!}{2^{k}} x^{-(2 k-1) / 2} \\
f^{k}(9 / 4) & =(-1)^{k-1} \frac{(2 k-1)!!}{2^{k}} \frac{2^{2 k-1}}{3^{2 k-1}} \\
& =(-1)^{k-1} \frac{(2 k-1)!!2^{k-1}}{3^{2 k-1}} .
\end{aligned}
$$

Let's write down the Taylor polynomial centred at $a=9 / 4$.

$$
\begin{array}{r}
P_{9 / 4,5} f(x)=f(9 / 4)+f^{\prime}(9 / 4)(x-9 / 4)+f^{\prime \prime}(9 / 4) / 2(x-9 / 4)^{2}+f^{\prime \prime \prime}(9 / 4) / 6(x-9 / 4)^{3} \\
f^{4}(9 / 4) / 24(x-9 / 4)^{4}+f^{5}(9 / 4) / 120(x-9 / 4)^{5}
\end{array}
$$

So,

$$
\begin{aligned}
& P_{9 / 4,5} f(x)=3 / 2+1 / 3(x-9 / 4)-1 / 3^{3}(x-9 / 4)^{2}+2 / 3^{5}(x-9 / 4)^{3} \\
& \quad-\frac{1 \cdot 3 \cdot 5 \cdot 2^{3}}{24 \cdot 3^{7}}(x-9 / 4)^{4}+\frac{1 \cdot 3 \cdot 5 \cdot 7 \cdot 2^{4}}{120 \cdot 3^{9}}(x-9 / 4)^{5} .
\end{aligned}
$$

If we plug in $x=2$, so that $x-9 / 4=-1 / 4$ we get an approximation to $f(2)=\sqrt{2}$.

$$
P_{9 / 4,3}(2)=3 / 2+1 / 3(-1 / 4)-1 / 3^{3}(1 / 4)^{2}-2 / 3^{5}(1 / 4)^{3}=\frac{10997}{7776} \approx 1.41422 \ldots
$$

On the other hand,

$$
\left|R_{3}(2,9 / 4)\right|=\frac{1 \cdot 3}{4!}(\xi)^{-7 / 2}(1 / 4)^{4}<\frac{1 \cdot 3}{4!}(1 / 2)=1 / 16
$$

In fact

$$
\left|R_{3}(2,9 / 4)\right|=\frac{10997}{7776}-\sqrt{2} \approx 4 \times 10^{-6}
$$

Blackboard 4. Let $A \subset \mathbb{R}^{n}$ be an open subset which is convex (if \vec{a} and \vec{b} belong to A, then so does every point on the line segment between them). Suppose that $f: A \longrightarrow \mathbb{R}$ is \mathcal{C}^{k}.

Given $\vec{a} \in A$, the k th Taylor polynomial of f centred at a is

$$
\begin{aligned}
P_{\vec{a}, k} f(\vec{x})=f(\vec{a}) & +\sum_{1 \leq i \leq n} \frac{\partial f}{\partial x_{i}}(\vec{a})\left(x_{i}-a_{i}\right)+1 / 2 \sum_{1 \leq i, j \leq n} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\vec{a})\left(x_{i}-a_{i}\right)\left(x_{j}-a_{j}\right)+\ldots \\
& +\frac{1}{k!} \sum_{1 \leq i_{1}, i_{2}, \ldots, i_{k} \leq n} \frac{\partial^{k} f}{\partial x_{i_{1}} \partial x_{i_{2}} \ldots \partial x_{i_{k}}}(\vec{a})\left(x_{i_{1}}-a_{i_{1}}\right)\left(x_{i_{2}}-a_{i_{2}}\right) \ldots\left(x_{i_{k}}-a_{i_{k}}\right)
\end{aligned}
$$

The remainder is the difference

$$
R_{\vec{a}, k} f(\vec{x})=f(\vec{x})-P_{\vec{a}, k} f(\vec{x}) .
$$

Theorem 5. Let $A \subset \mathbb{R}^{n}$ be an open subset which is convex. Suppose that $f: A \longrightarrow$ \mathbb{R} is \mathcal{C}^{k+1}, and let \vec{a} and \vec{b} belong to A.

Then there is a vector $\vec{\xi}$ on the line segment between \vec{a} and \vec{b} such that

$$
R_{\vec{a}, k}(\vec{b})=\frac{1}{(k+1)!} \sum_{1 \leq l_{1}, l_{2}, \ldots, l_{k+1} \leq n} \frac{\partial^{k+1} f}{\partial x_{i_{1}} \partial x_{i_{2}} \ldots \partial x_{i_{k+1}}}(\vec{\xi})\left(b_{i_{1}}-a_{i_{1}}\right)\left(b_{i_{2}}-a_{i_{2}}\right) \ldots\left(b_{i_{k+1}}-a_{i_{k+1}}\right)
$$

Proof. As A is open and convex, we may find $\epsilon>0$ so that the parametrised line

$$
\vec{r}:(-\epsilon, 1+\epsilon) \longrightarrow \mathbb{R}^{n} \quad \text { given by } \quad \vec{r}(t)=\vec{a}+t(\vec{b}-\vec{a})
$$

is contained in A. Let

$$
g:(-\epsilon, 1+\epsilon) \longrightarrow \mathbb{R}
$$

be the composition of $\vec{r}(t)$ and $f(\vec{x})$.

Claim 6.

$$
P_{0, k} g(t)=P_{\vec{a}, k} f(\vec{r}(t)) .
$$

Proof of (6). This is just the chain rule;

$$
\begin{aligned}
g^{\prime}(t) & =\sum_{1 \leq i \leq n} \frac{\partial f}{\partial x_{i}}(\vec{r}(t))\left(b_{i}-a_{i}\right) \\
g^{\prime \prime}(t) & =\sum_{1 \leq i \leq j \leq n} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\vec{r}(t))\left(b_{i}-a_{i}\right)\left(b_{j}-a_{j}\right)
\end{aligned}
$$

and so on.
So the result follows by the one variable result.
We can write out the first few terms of the Taylor series of f and get something interesting. Let $\vec{h}=\vec{x}-\vec{a}$. Then

$$
P_{\vec{a}, 2} f(x)=f(\vec{a})+\sum_{1 \leq i \leq n} \frac{\partial f}{\partial x_{i}}(\vec{a}) h_{i}+1 / 2 \sum_{1 \leq i, j \leq n} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\vec{a}) h_{i} h_{j} .
$$

The middle term is the same as multiplying the row vector formed by the gradient of f,

$$
\nabla f(\vec{a})=\left(\frac{\partial f}{\partial x_{1}}(\vec{a}), \frac{\partial f}{\partial x_{2}}(\vec{a}), \ldots \frac{\partial f}{\partial x_{n}}(\vec{a})\right)
$$

and the column vector given by \vec{h}. The last term is the same as multiplying the matrix with entries

$$
\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\vec{a}),
$$

on the left by \vec{h} and on the right by the column vector given by \vec{h} and dividing by 2.

The matrix

$$
H f(\vec{a})=\left(h_{i j}\right)=\left(\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\vec{a})\right)
$$

is called the Hessian of $f(\vec{x})$.
We have then

$$
P_{\vec{a}, 2} f(x)=f(\vec{a})+\nabla f(\vec{a}) \cdot \vec{h}+\frac{1}{2} \vec{h} \cdot(H f(\vec{a}) \cdot \vec{h})
$$

