DIVERGENCE, GRADIENT AND CURL
BASED ON LECTURE NOTES BY JAMES MCKERNAN

One can formally define the gradient of a function

Vf:R® — R,
by the formal rule
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Just like % is an operator that can be applied to a function, the del operator is a
vector operator given by
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Using the operator del we can define two other operations, this time on vector
fields:

Blackboard 1. Let A C R? be an open subset and let F: A —s R3 be a vector
field.

The divergence ofﬁ 1s the scalar function,
divF: A — R,
which is defined by the rule
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The curl ofﬁ 1s the vector field
curl F: A — R?,

which is defined by the rule
curlﬁ(x,a:,z) =V x ﬁ(w,y,z)
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Note that the del operator makes sense for any n, not just n = 3. So we can

define the gradient and the divergence in all dimensions. However curl only makes
sense when n = 3.

Blackboard 2. The vector field F: A — R3 is called rotation free if the curl

is zero, curl F = 0, and it is called incompressible if the divergence is zero,
div FF = 0.

Proposition 3. Let f be a scalar field and F a vector field.
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(1) If f is C2, then curl(grad f) = 0. Every conservative vector field is rotation
free.
(2) IfF is C?, then div(curl F) = 0. The curl of a vector field is incompressible.

Proof. We compute;
curl(grad f) =V x (V)
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This is (2). O

Example 4. The gravitational field
- _ cx . cy . cz -
F(I,y,Z) - (xZ +y2 + 22)3/21+ (.’EQ _|_y2 +Z2)3/2]+ (1‘2 +y2 + 22)3/2k’

is a gradient vector field, so that the gravitational field is rotation free. In fact if
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then F = grad f, so that
curl F = curl(grad f) = 0.
Example 5. A magnetic field B is always the curl of something,
B = curl /i
where A is a vector field. So
div(B) = div(curl A) = 0.
Therefore a magnetic field is always incompressible.

There is one other way to combine two del operators:
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Blackboard 6. The Laplace operator take a scalar field f: A — R and outputs
another scalar field
V2f: A—R.
It is defined by the rule
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A solution of the differential equation
Vif =0,

is called a harmonic function.

Example 7. The function
f('rv Y, Z) =
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is harmonic.



