One can formally define the gradient of a function

$$
\nabla f: \mathbb{R}^{3} \longrightarrow \mathbb{R}
$$

by the formal rule

$$
\operatorname{grad} f=\nabla f=\hat{\imath} \frac{\partial f}{\partial x}+\hat{\jmath} \frac{\partial f}{\partial y}+\hat{k} \frac{\partial f}{\partial z}
$$

Just like $\frac{d}{d x}$ is an operator that can be applied to a function, the del operator is a vector operator given by

$$
\nabla=\hat{\imath} \frac{\partial}{\partial x}+\hat{\jmath} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)
$$

Using the operator del we can define two other operations, this time on vector fields:

Blackboard 1. Let $A \subset \mathbb{R}^{3}$ be an open subset and let $\vec{F}: A \longrightarrow \mathbb{R}^{3}$ be a vector field.

The divergence of \vec{F} is the scalar function,

$$
\operatorname{div} \vec{F}: A \longrightarrow \mathbb{R}
$$

which is defined by the rule

$$
\begin{aligned}
\operatorname{div} \vec{F}(x, y, z) & =\nabla \cdot \vec{F}(x, y, z) \\
& =\left(\hat{\imath} \frac{\partial f}{\partial x}+\hat{\jmath} \frac{\partial f}{\partial y}+\hat{k} \frac{\partial f}{\partial z}\right) \cdot\left(F_{1}(x, y, z), F_{2}(x, y, z), F_{3}(x, y, z)\right) \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z}
\end{aligned}
$$

The curl of \vec{F} is the vector field

$$
\operatorname{curl} \vec{F}: A \longrightarrow \mathbb{R}^{3}
$$

which is defined by the rule

$$
\begin{aligned}
\operatorname{curl} \vec{F}(x, x, z) & =\nabla \times \vec{F}(x, y, z) \\
& =\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
F_{1} & F_{2} & F_{3}
\end{array}\right| \\
& =\left(\frac{\partial F_{3}}{\partial y}-\frac{\partial F_{2}}{\partial z}\right) \hat{\imath}-\left(\frac{\partial F_{3}}{\partial x}-\frac{\partial F_{1}}{\partial z}\right) \hat{\jmath}+\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) \hat{k}
\end{aligned}
$$

Note that the del operator makes sense for any n, not just $n=3$. So we can define the gradient and the divergence in all dimensions. However curl only makes sense when $n=3$.
Blackboard 2. The vector field $\vec{F}: A \longrightarrow \mathbb{R}^{3}$ is called rotation free if the curl is zero, curl $\vec{F}=\overrightarrow{0}$, and it is called incompressible if the divergence is zero, $\operatorname{div} \vec{F}=0$.
Proposition 3. Let f be a scalar field and \vec{F} a vector field.
(1) If f is \mathcal{C}^{2}, then $\operatorname{curl}(\operatorname{grad} f)=\overrightarrow{0}$. Every conservative vector field is rotation free.
(2) If \vec{F} is \mathcal{C}^{2}, then $\operatorname{div}(\operatorname{curl} \vec{F})=0$. The curl of a vector field is incompressible.

Proof. We compute;

$$
\begin{aligned}
\operatorname{curl}(\operatorname{grad} f) & =\nabla \times(\nabla f) \\
& =\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial z}
\end{array}\right| \\
& =\left(\frac{\partial^{2} f}{\partial y \partial z}-\frac{\partial^{2} f}{\partial z \partial y}\right) \hat{\imath}-\left(\frac{\partial^{2} f}{\partial x \partial z}-\frac{\partial^{2} f}{\partial z \partial x}\right) \hat{\jmath}+\left(\frac{\partial^{2} f}{\partial x \partial y}-\frac{\partial^{2} f}{\partial y \partial x}\right) \hat{k} \\
& =\overrightarrow{0} .
\end{aligned}
$$

This gives (1).

$$
\begin{aligned}
\operatorname{div}(\operatorname{curl} \vec{F}) & =\nabla \cdot(\nabla \times f) \\
& =\nabla \cdot\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
F_{1} & F_{2} & F_{3}
\end{array}\right| \\
& =\left|\begin{array}{ccc}
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
F_{1} & F_{2} & F_{3}
\end{array}\right| \\
& =\frac{\partial^{2} F_{3}}{\partial x \partial y}-\frac{\partial^{2} F_{2}}{\partial x \partial z}-\frac{\partial^{2} F_{3}}{\partial y \partial x}+\frac{\partial^{2} F_{1}}{\partial y \partial z}+\frac{\partial^{2} F_{2}}{\partial z \partial x}-\frac{\partial^{2} F_{1}}{\partial z \partial y} \\
& =0
\end{aligned}
$$

This is (2).
Example 4. The gravitational field

$$
\vec{F}(x, y, z)=\frac{c x}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} \hat{\imath}+\frac{c y}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} \hat{\jmath}+\frac{c z}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} \hat{k},
$$

is a gradient vector field, so that the gravitational field is rotation free. In fact if

$$
f(x, y, z)=-\frac{c}{\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}}
$$

then $\vec{F}=\operatorname{grad} f$, so that

$$
\operatorname{curl} \vec{F}=\operatorname{curl}(\operatorname{grad} f)=\overrightarrow{0}
$$

Example 5. A magnetic field \vec{B} is always the curl of something,

$$
\vec{B}=\operatorname{curl} \vec{A},
$$

where \vec{A} is a vector field. So

$$
\operatorname{div}(\vec{B})=\operatorname{div}(\operatorname{curl} \vec{A})=0
$$

Therefore a magnetic field is always incompressible.
There is one other way to combine two del operators:

Blackboard 6. The Laplace operator take a scalar field $f: A \longrightarrow \mathbb{R}$ and outputs another scalar field

$$
\nabla^{2} f: A \longrightarrow \mathbb{R}
$$

It is defined by the rule

$$
\nabla^{2} f=\operatorname{div}(\operatorname{grad} f)=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}
$$

A solution of the differential equation

$$
\nabla^{2} f=0
$$

is called a harmonic function.
Example 7. The function

$$
f(x, y, z)=-\frac{c}{\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}}
$$

is harmonic.

