Vector fields

Based on lecture notes by James McKernan

Blackboard 1. Let $A \subset \mathbb{R}^{n}$ be an open subset. A vector field on A is function $\vec{F}: A \longrightarrow \mathbb{R}^{n}$.

One obvious way to get a vector field is to take the gradient of a differentiable function. If $f: A \longrightarrow \mathbb{R}$, then

$$
\nabla f: A \longrightarrow \mathbb{R}^{n}
$$

is a vector field.
Blackboard 2. A vector field $\vec{F}: A \longrightarrow \mathbb{R}^{n}$ is called a gradient (aka conservative) vector field if $\vec{F}=\nabla f$ for some differentiable function $f: A \longrightarrow \mathbb{R}$.

Example 3. Let

$$
\vec{F}: \mathbb{R}^{3}-\{0\} \longrightarrow \mathbb{R}^{3}
$$

be the vector field

$$
\vec{F}(x, y, z)=\frac{c x}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} \hat{\imath}+\frac{c y}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} \hat{\jmath}+\frac{c z}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} \hat{k}
$$

for some constant c. Then $\vec{F}(x, y, z)$ is the gradient of

$$
f: \mathbb{R}^{3}-\{0\} \longrightarrow \mathbb{R}
$$

given by

$$
f(x, y, z)=-\frac{c}{\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}}
$$

So \vec{F} is a conservative vector field. Notice that if $c<0$ then \vec{F} models the gravitational force and f is the potential (note that unfortunately mathematicians and physicists have different sign conventions for f).

Proposition 4. If \vec{F} is a conservative vector field and \vec{F} is \mathcal{C}^{1} function, then

$$
\frac{\partial F_{i}}{\partial x_{j}}=\frac{\partial F_{j}}{\partial x_{i}}
$$

for all i and j between 1 and n.
Proof. If \vec{F} is conservative, then we may find a differentiable function $f: A \longrightarrow \mathbb{R}^{n}$ such that

$$
F_{i}=\frac{\partial f}{\partial x_{i}}
$$

As F_{i} is \mathcal{C}^{1} for each i, it follows that f is \mathcal{C}^{2}. But then

$$
\begin{aligned}
\frac{\partial F_{i}}{\partial x_{j}} & =\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}} \\
& =\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} \\
& =\frac{\partial F_{j}}{\partial x_{i}}
\end{aligned}
$$

Notice that (4) is a negative result; one can use it show that various vector fields are not conservative.

Example 5. Let

$$
\vec{F}: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2} \quad \text { given by } \quad \vec{F}(x, y)=(-y, x)
$$

Then

$$
\frac{\partial F_{1}}{\partial y}=-1 \quad \text { and } \quad \frac{\partial F_{2}}{\partial x}=1 \neq-1
$$

So \vec{F} is not conservative.
Example 6. Let

$$
\vec{F}: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2} \quad \text { given by } \quad \vec{F}(x, y)=(y, x+y)
$$

Then

$$
\frac{\partial F_{1}}{\partial y}=1 \quad \text { and } \quad \frac{\partial F_{2}}{\partial x}=1
$$

so \vec{F} might be conservative. Let's try to find

$$
f: \mathbb{R}^{2} \longrightarrow \mathbb{R} \quad \text { such that } \quad \nabla f(x, y)=(y, x+y)
$$

If f exists, then we must have

$$
\frac{\partial f}{\partial x}=y \quad \text { and } \quad \frac{\partial f}{\partial y}=x+y
$$

If we integrate the first equation with respect to x, then we get

$$
f(x, y)=x y+g(y)
$$

Note that $g(y)$ is not just a constant but it is a function of y. There are two ways to see this. One way, is to imagine that for every value of y, we have a separate differential equation. If we integrate both sides, we get an arbitrary constant c. As we vary y, c varies, so that $c=g(y)$ is a function of y. On the other hand, if to take the partial derivatives of $g(y)$ with respect to x, then we get 0 . Now we take $x y+g(y)$ and differentiate with respect to y, to get

$$
x+y=\frac{\partial(x y+g(y))}{\partial y}=x+\frac{d g}{d y}(y)
$$

So

$$
g^{\prime}(y)=y
$$

Integrating both sides with respect to y we get

$$
g(y)=y^{2} / 2+c
$$

It follows that

$$
\nabla\left(x y+y^{2} / 2\right)=(y, x+y)
$$

so that \vec{F} is conservative.

