Vector fields

BASED ON LECTURE NOTES BY JAMES MCKERNAN

Blackboard 1. Let $A \subset \mathbb{R}^n$ be an open subset. A **vector field** on A is function $\vec{F}: A \longrightarrow \mathbb{R}^n$.

One obvious way to get a vector field is to take the gradient of a differentiable function. If $f: A \longrightarrow \mathbb{R}$, then

$$\nabla f \colon A \longrightarrow \mathbb{R}^n$$
,

is a vector field.

Blackboard 2. A vector field $\vec{F}: A \longrightarrow \mathbb{R}^n$ is called a gradient (aka conservative) vector field if $\vec{F} = \nabla f$ for some differentiable function $f: A \longrightarrow \mathbb{R}$.

Example 3. Let

$$\vec{F} : \mathbb{R}^3 - \{0\} \longrightarrow \mathbb{R}^3,$$

be the vector field

$$\vec{F}(x,y,z) = \frac{cx}{(x^2+y^2+z^2)^{3/2}}\hat{\imath} + \frac{cy}{(x^2+y^2+z^2)^{3/2}}\hat{\jmath} + \frac{cz}{(x^2+y^2+z^2)^{3/2}}\hat{k},$$

for some constant c. Then $\vec{F}(x,y,z)$ is the gradient of

$$f: \mathbb{R}^3 - \{0\} \longrightarrow \mathbb{R},$$

given by

$$f(x, y, z) = -\frac{c}{(x^2 + y^2 + z^2)^{1/2}}.$$

So \vec{F} is a conservative vector field. Notice that if c < 0 then \vec{F} models the gravitational force and f is the potential (note that unfortunately mathematicians and physicists have different sign conventions for f).

Proposition 4. If \vec{F} is a conservative vector field and \vec{F} is C^1 function, then

$$\frac{\partial F_i}{\partial x_i} = \frac{\partial F_j}{\partial x_i},$$

for all i and j between 1 and n.

Proof. If \vec{F} is conservative, then we may find a differentiable function $f \colon A \longrightarrow \mathbb{R}^n$ such that

$$F_i = \frac{\partial f}{\partial x_i}.$$

As F_i is \mathcal{C}^1 for each i, it follows that f is \mathcal{C}^2 . But then

$$\begin{split} \frac{\partial F_i}{\partial x_j} &= \frac{\partial^2 f}{\partial x_j \partial x_i} \\ &= \frac{\partial^2 f}{\partial x_i \partial x_j} \\ &= \frac{\partial F_j}{\partial x_i}. \end{split}$$

Notice that (4) is a negative result; one can use it show that various vector fields are not conservative.

Example 5. Let

$$\vec{F} \colon \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
 given by $\vec{F}(x,y) = (-y,x)$.

Then

$$\frac{\partial F_1}{\partial u} = -1$$
 and $\frac{\partial F_2}{\partial x} = 1 \neq -1$.

So \vec{F} is not conservative.

Example 6. Let

$$\vec{F}\colon \mathbb{R}^2 \longrightarrow \mathbb{R}^2 \qquad given \ by \qquad \vec{F}(x,y) = (y,x+y).$$

Then

$$\frac{\partial F_1}{\partial y} = 1$$
 and $\frac{\partial F_2}{\partial x} = 1$,

so \vec{F} might be conservative. Let's try to find

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
 such that $\nabla f(x, y) = (y, x + y)$.

If f exists, then we must have

$$\frac{\partial f}{\partial x} = y$$
 and $\frac{\partial f}{\partial y} = x + y$.

If we integrate the first equation with respect to x, then we get

$$f(x,y) = xy + g(y).$$

Note that g(y) is not just a constant but it is a function of y. There are two ways to see this. One way, is to imagine that for every value of y, we have a separate differential equation. If we integrate both sides, we get an arbitrary constant c. As we vary y, c varies, so that c = g(y) is a function of y. On the other hand, if to take the partial derivatives of g(y) with respect to x, then we get 0. Now we take xy + g(y) and differentiate with respect to y, to get

$$x + y = \frac{\partial(xy + g(y))}{\partial y} = x + \frac{dg}{dy}(y).$$

So

$$a'(u) = u$$

Integrating both sides with respect to y we get

$$g(y) = y^2/2 + c.$$

It follows that

$$\nabla(xy + y^2/2) = (y, x + y),$$

so that \vec{F} is conservative.