CURVATURE AND TORSION

Based on lecture notes by James McKernan
Blackboard 1. Let $\vec{r}: I \longrightarrow \mathbb{R}^{n}$ be a \mathcal{C}^{2} regular curve (i.e., $\vec{r}^{\prime}(t) \neq \overrightarrow{0}$ for all t).
The curvature $\kappa(s)$ of $\vec{r}(s)$ is the magnitude of the vector

$$
\vec{T}^{\prime}(s)=\frac{d \vec{T}(s)}{d s}
$$

and the unit normal vector \vec{N} is the unit vector pointing in the direction of $\vec{T}^{\prime}(s)$

$$
\vec{N}(s)=\frac{\vec{T}^{\prime}(s)}{\left\|\overrightarrow{T^{\prime}}(s)\right\|}
$$

One can try to calculate the curvature using the parameter t. By the chain rule,

$$
\frac{d \vec{T}(t)}{d t}=\frac{d \vec{T}(s)}{d s} \frac{d s}{d t}
$$

So

$$
\frac{d \vec{T}(s)}{d s}=\frac{\frac{d \vec{T}(t)}{d t}}{\frac{d s}{d t}}
$$

The denominator is the speed. It follows that \vec{n} and $d \vec{T} / d t$ point in the same direction.

Note that the normal vector and the unit tangent vector are always orthogonal. Indeed, more generally

Proposition 2. Let $\vec{v}: I \rightarrow \mathbb{R}^{n}$. Then

$$
\frac{d(\vec{v} \cdot \vec{v})}{d t}=2 \vec{v}^{\prime} \cdot \vec{v}
$$

and in particular if $|\vec{v}(t)|$ is constant then \vec{v}^{\prime} and \vec{v} are orthogonal.
Now,

$$
\|\vec{T}(s)\|=1
$$

and so, as $\vec{N}(s)$ points in the same direction as $\vec{T}^{\prime}(s)$, it follows that the tangent vector and the normal vector are orthogonal.

Blackboard 3.

$$
\vec{B}(s)=\vec{T}(s) \times \vec{N}(s)
$$

is called the binormal vector.
The three vectors $\vec{T}(s), \vec{N}(s)$, and $\vec{B}(s)$ are unit vectors and pairwise orthogonal, that is, these vectors are an orthonormal basis of \mathbb{R}^{3}. Notice that $\vec{T}(s), \vec{N}(s)$, and $\vec{B}(s)$ are a right handed set.

We call these vectors a moving frame or the Frenet-Serret frame. Now

$$
\frac{d \vec{B}}{d s}(s) \cdot \vec{B}(s)=0
$$

as

$$
\vec{B}(s) \cdot \vec{B}(s)=1
$$

It follows that

$$
\frac{d \vec{B}}{d s}(s)
$$

lies in the plane spanned by $\vec{T}(s)$ and $\vec{N}(s)$.

$$
\begin{aligned}
\frac{d \vec{B}}{d s}(s) \cdot \vec{T}(s) & =\frac{d(\vec{T} \times \vec{N})}{d s}(s) \cdot \vec{T}(s) \\
& =\left(\frac{d \vec{T}}{d s}(s) \times \vec{N}(s)+\vec{T}(s) \times \frac{d \vec{N}}{d s}(s)\right) \cdot \vec{T}(s) \\
& =\kappa(s)(\vec{N}(s) \times \vec{N}(s)) \cdot \vec{T}(s)+\left(\vec{T}(s) \times \frac{d \vec{N}}{d s}(s)\right) \cdot \vec{T}(s) \\
& =0+(\vec{T}(s) \times \vec{T}(s)) \cdot \frac{d \vec{N}}{d s}(s) \\
& =0
\end{aligned}
$$

It follows that

$$
\frac{d \vec{B}}{d s}(s) \quad \text { and } \quad \vec{T}(s)
$$

are orthogonal, and so

$$
\frac{d \vec{B}}{d s}(s) \quad \text { is parallel to } \quad \vec{N}(s)
$$

Blackboard 4. The torsion of the curve $\vec{r}(s)$ is the unique scalar $\tau(s)$ such that

$$
\frac{d \vec{B}}{d s}(s)=-\tau(s) \vec{N}(s)
$$

If we have a helix, the sign of the torsion distinguishes between a right handed helix and a left handed helix. The magnitude of the torsion measures how spread out the helix is (the curvature measures how tight the turns are). Now

$$
\frac{d \vec{N}}{d s}(s)
$$

is orthogonal to $\vec{N}(s)$, and so it is a linear combination of $\vec{T}(s)$ and $\vec{B}(s)$. In fact,

$$
\begin{aligned}
\frac{d \vec{N}}{d s}(s) & =\frac{d(\vec{B} \times \vec{T})}{d s}(s) \\
& =\frac{d \vec{B}}{d s}(s) \times \vec{T}(s)+\vec{B}(s) \times \frac{d \vec{T}}{d s}(s) \\
& =-\tau(s) \vec{N}(s) \times \vec{T}(s)+\kappa(s) \vec{B}(s) \times \vec{N}(s) \\
& =\tau(s) \vec{B}(s)-\kappa(s) \vec{T}(s) \\
& =-\kappa(s) \vec{T}(s)+\tau(s) \vec{B}(s)
\end{aligned}
$$

Blackboard 5. We say that $\vec{r}(t)$ is smooth if $\vec{r}(t)$ is \mathcal{C}^{∞}.
Theorem 6 (Frenet Formulae). Let $\vec{r}: I \longrightarrow \mathbb{R}^{3}$ be a regular smooth parametrised curve. Then

$$
\left(\begin{array}{c}
\vec{T}^{\prime}(s) \\
\vec{N}^{\prime}(s) \\
\vec{B}^{\prime}(s)
\end{array}\right)=\left(\begin{array}{ccc}
0 & \kappa(s) & 0 \\
-\kappa(s) & 0 & \tau(s) \\
0 & -\tau(s) & 0
\end{array}\right)\left(\begin{array}{c}
\vec{T}(s) \\
\vec{N}(s) \\
\vec{B}(s)
\end{array}\right)
$$

Of course, s represents the arclength parameter and primes denote derivatives with respect to s. Notice that the 3×3 matrix A appearing in (6) is skewsymmetric, that is $A^{t}=-A$. The way we have written the Frenet formulae, it appears that we have two 3×1 vectors; strictly speaking these are the rows of two 3×3 matrices.

Theorem 7. Let $I \subset \mathbb{R}$ be an open interval and suppose we are given two smooth functions

$$
\kappa: I \longrightarrow \mathbb{R} \quad \text { and } \quad \tau: I \longrightarrow \mathbb{R}
$$

where $\kappa(s)>0$ for all $s \in I$.
Then there is a regular smooth curve $\vec{r}: I \longrightarrow \mathbb{R}^{3}$ parametrised by arclength with curvature $\kappa(s)$ and torsion $\tau(s)$. Further, any two such curves are congruent, that is, they are the same up to translation and rotation.

Let's consider the example of the helix:

Example 8.

$$
\vec{r}(s)=\left(a \cos \frac{s}{c}, a \sin \frac{s}{c}, \frac{b s}{c}\right)
$$

where

$$
c^{2}=a^{2}+b^{2}
$$

Let's assume that $a>0$. By convention $c>0$. Then

$$
\vec{T}(s)=\frac{1}{c}\left(-a \sin \frac{s}{c}, a \cos \frac{s}{c}, b\right)
$$

Hence

$$
\frac{d T}{d s}(s)=\frac{-a}{c^{2}}\left(\cos \frac{s}{c}, \sin \frac{s}{c}, 0\right)=\frac{a}{c^{2}}\left(-\cos \frac{s}{c},-\sin \frac{s}{c}, 0\right)=\frac{a}{c^{2}} \vec{N}(s)
$$

It follows that

$$
\kappa(s)=\frac{a}{c^{2}} \quad \text { and } \quad \vec{N}(s)=\left(-\cos \frac{s}{c},-\sin \frac{s}{c}, 0\right)
$$

Finally,

$$
\vec{B}(s)=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
-\frac{a}{c} \sin \frac{s}{c} & \frac{a}{c} \cos \frac{s}{c} & \frac{b s}{c} \\
-\cos \frac{s}{c} & -\sin \frac{s}{c} & 0
\end{array}\right|
$$

It follows that

$$
\vec{B}(s)=\left(\frac{b}{c} \sin \frac{s}{c},-\frac{b}{c} \cos \frac{s}{c}, \frac{a}{c}\right)=\frac{1}{c}\left(b \sin \frac{s}{c},-b \cos \frac{s}{c}, a\right) .
$$

Finally, note that

$$
\frac{d \vec{B}}{d s}(s)=\frac{b}{c^{2}}\left(\cos \frac{s}{c}, \sin \frac{s}{c}, 0\right)=-\frac{b}{c^{2}} \vec{N}
$$

Using this we can compute the torsion:

$$
\tau(s)=\frac{b}{c^{2}}
$$

It is interesting to use the torsion and curvature to characterise various geometric properties of curves. Let's say that a parametrised differentiable curve $\vec{r}: I \longrightarrow \mathbb{R}^{3}$ is planar if there is a plane Π which contains the image of \vec{r}.
Theorem 9. A regular smooth curve $\vec{r}: I \longrightarrow \mathbb{R}^{3}$ is planar if and only if the torsion is zero.

Proof. We may assume that the curve passes through the origin.
Suppose that \vec{r} is planar. Then the image of \vec{r} is contained in a plane Π. As the curve passes through the origin, Π contains the origin as well. Note that the unit tangent vector $\vec{T}(s)$ and the unit normal vector $\vec{N}(s)$ are contained in Π. It follows that $\vec{B}(s)$ is a normal vector to the plane; as $\vec{B}(s)$ is a unit vector, it must be constant. But then

$$
\frac{d \vec{B}}{d s}(s)=\overrightarrow{0}=0 \vec{N}(s),
$$

so that the torsion is zero.
Now suppose that the torsion is zero. Then

$$
\frac{d B}{d s}(s)=0 \vec{N}=\overrightarrow{0},
$$

so that $\vec{B}(s)=B_{0}$, is a constant vector. Consider the function

$$
f(s)=\vec{r}(s) \cdot \vec{B}(s)=\vec{r}(s) \cdot \vec{B}_{0}
$$

Then

$$
\begin{aligned}
\frac{d f}{d s}(s) & =\frac{d\left(\vec{r} \cdot \vec{B}_{0}\right)}{d s}(s) \\
& =\vec{T}(s) \cdot \vec{B}_{0}=0 .
\end{aligned}
$$

So $f(s)$ is constant. It is zero when $\vec{r}(a)=\overrightarrow{0}$ (the curve passes through the origin) so that $f(s)=0$. But then $\vec{r}(s)$ is always orthogonal to a fixed vector, so that \vec{r} is contained in a plane, that is, C is planar.

It is interesting to try to figure out how to characterise curves which are contained in spheres or cylinders.

