
Parametrised curves
Based on lecture notes by James McKernan

Blackboard 1. A parametrised differentiable curve in Rn is a differentiable
function ~r : I −→ Rn, where I is an open interval in R.

Remark 2. Any open interval I is one of four different forms: (a, b); (−∞, b);
(a,∞); (−∞,∞) = R, where a and b are real numbers.

Blackboard 3. The velocity vector at time t of a parametrised differentiable
curve ~r : I −→ Rn is the derivative:

~v(t) = ~r′(t) = D~r(t).

If ~v is differentiable, then the acceleration vector at time t is the derivative of
the velocity vector:

~a(t) = ~v′(t) = ~r′′(t).

Example 4. Let

~r : R −→ R3,

be given by

~r(t) = (a cos t, a sin t, bt).

This traces out a helix. The velocity vector is

~v(t) = (−a sin t, a cos t, b).

The acceleration vector is

~a(t) = (−a cos t,−a sin t, 0).

The speed, that is the magnitude of the velocity vector,

‖~v(t)‖ = (a2 + b2)1/2,

is constant. Nevertheless the acceleration vector is not zero, as we are travelling on
a curve and not a straight line.

Blackboard 5. Let ~r(t) be the position of a planet orbiting a sun. Kepler’s second
law: the area swept by ~r per unit of time is constant.

Blackboard 6. Newton’s law of gravity: ~a = − GM
|r(t)|3~r.

Claim 7. The area swept by ~r per unit time is ~r × ~v.

Blackboard 8. Proof of Kepler’s second law, from Newton’s law of gravity.

d

dt
(~r × ~v) = ~r′ × ~v + ~r × ~v′

= ~v × ~v + ~r × (− GM

|r(t)|3
~r)

= 0.

Hence ~r(t) × ~v(t) = ~c is a constant, proving the second law. It also follows that ~r
is always on the plane orthogonal to ~c.

Note that Kepler’s second law holds for any gravitational law for which ~a is
proportional to ~v.
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Blackboard 9. Let I be an open interval. A partition P of [a, b] ⊂ I is a sequence
of points

a = t0 < t1 < · · · < tn = b,

for some n ≥ 1. The mesh of P is

m(P) = max
i
{ |ti+1 − ti| | 0 ≤ i ≤ n− 1 }.

Blackboard 10. Let ~r : I −→ Rn be a parametrised differentiable curve, and let P
be a partition. We think of

l(P) =

n−1∑
i=0

‖~r(ti+1)− r(ti)‖,

as being an approximation to the length of the curve ~r([a, b]).
The curve ~r has length L if given any ε > 0, there is a δ > 0 such that for every

partition P whose mesh size is less than δ, we have

‖L− l(P)‖ < ε.

There are interesting examples of curves that don’t have a length.
Start with interval [0, 1] in the plane. The length is 1. Now adjust this curve,

by adding in a triangular hump in the middle, so that we get four line segments of
length 1/3. This is a curve of length 4/3.

Now add a hump to each of the four line segments of length 1/3. The length
of the resulting curve is (4/3)2. If we keep doing this, then we get more and more
complicated curves, whose length at stage n is (4/3)n. This process converges to a
very pointed curve whose length is infinite (in fact this curve is a fractal).

However:

Proposition 11. If ~r : I −→ Rn is a C1-function, then the curve ~r([a, b]) has a
length

L =

∫ b

a

‖~r′(t)‖ dt.

Remark 12. The fractal curve above is continuous but it is nowhere differentiable
(the curve has too many sharp points).

In general the exact formula for the arclength is only of theoretical interest.
However there are some contrived examples where we can calculately the arclength
precisely.

Example 13. Let
~r : R −→ R2,

be the parametrised differentiable curve given by

~r(t) = a cos t̂ı+ a sin t̂.

Then
~r′(t) = −a sin t̂ı+ a cos t̂,

and so
‖~r′(t)‖ = a.

Hence the length of the curve ~r([0, 2π]) is

L =

∫ 2π

0

adt = 2πa,
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which is indeed the circumference of a circle of radius a.

Example 14. Let

~r : R −→ R3,

be the parametrised differentiable curve given by

~r(t) = a cos t̂ı+ a sin t̂+ btk̂,

Then

~r′(t) = −a sin t̂ı+ a cos t̂+ bk̂,

and so

‖~r′(t)‖ =
√
a2 + b2.

Hence the length of the curve ~r([0, 2π]) is

L =

∫ 2π

0

(a2 + b2)1/2 dt = 2π(a2 + b2)1/2.

Example 15. Let

~r : R −→ R2,

be the parametrised differentiable curve given by

~r(t) = a cos t̂ı+ b sin t̂.

Then

~r′(t) = −a sin t̂ı+ b cos t̂,

and so

‖~r′(t)‖ = (a2 sin2 t+ b2 cos2 t)1/2

Hence the length of the curve ~r([0, 2π]) is

L =

∫ 2π

0

(a2 sin2 t+ b2 cos2 t)1/2 dt,

the length of an ellipse, with major and minor axes of length a and b.

Blackboard 16. We say a parametrised differentiable curve ~r : I −→ Rn is regu-
lar if ~r′(t) 6= 0 (the speed is never zero).

Blackboard 17. Let ~r : I −→ Rn be a regular parametrised differentiable curve,
which is of class C1. Given a ∈ I, define the arclength parameter s(t), by the
formula

s(t) =

∫ t

a

‖~r′(τ)‖ dτ

By the fundamental theorem of calculus

s′(t) =
d

dt

∫ t

a

‖~r′(τ)‖ dτ

= ‖~r′(t)‖,

which is the speed at time t. Since s′(t) is nowhere zero, we can write t as a function
of s, that is we can write down the inverse function, t(s), which will be C1.
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Example 18. For the helix,

~r(t) = a cos t̂ı+ a sin t̂+ bk̂t,

we have

s(t) =

∫ t

0

‖~r′(τ)‖dτ =
√
a2 + b2

1/2
t.

Therefore

t(s) =
s√

a2 + b2
.

In this case

~r(s) = a cos

(
s√

a2 + b2

)
ı̂+ a sin

(
s√

a2 + b2

)
̂+ bk̂

(
s√

a2 + b2

)
.

In fact, one can always parametrise a regular curve by its arclength and in this
case the derivative is a unit vector:

Blackboard 19. Let ~r : I −→ Rn be a parametrised differentiable curve parametrised
by the arclength. Then

~T (s) =
d~r

ds
,

is the unit tangent vector.

To see that this is really a unit vector note that

d~r

dt
=
d~r

ds

ds

dt

= ~T (s)
ds

dt
,

by the chain rule. So

~T =
d~r
dt
ds
dt

=
~r′

‖~r′‖
so that the unit tangent vector is the unit vector which points in the direction of
the velocity.

Example 20. Let ~r(t) = (a cos t, a sin t) be the standard parametrisation of the
circle of radius a. Then

s = ta so that t =
s

a
.

So

~r(s) = (a cos
( s
a

)
, a sin

( s
a

)
),

and
~T (s) = (− sin

( s
a

)
, cos

( s
a

)
).


