
Implicit functions
Based on lecture notes by James McKernan

Consider the curve y2 = x in the plane R2,

C = { (x, y) ∈ R2 | y2 = x }.

This is not the graph of a function, and yet it is quite close to the graph of a
function.

Given any point on the graph, let’s say the point (2, 4), we can always find open
intervals U containing 2 and V containing 4 and a smooth function f : U −→ V
such that C ∩ (U × V ) is the graph of f .

Indeed, take U = (0,∞), V = (0,∞) and f(x) =
√
x. In fact, we can do this

for any point on the graph, apart from the origin. If it is above the x-axis, the
function above works. If the point we are interested in is below the x-axis, replace
V by (0,−∞) and f(x) =

√
x, by g(x) = −

√
x.

How can we tell that the origin is a point where we cannot define an implicit
function? Well away from the origin, the tangent line is not vertical but at the
origin the tangent line is vertical. In other words, if we consider

F : R2 −→ R,

given by F (x, y) = y2 − x, so that C is the set of points where F is zero, then

DF (x, y) = (−1, 2y).

The locus where we run into trouble, is where 2y = 0. Somewhat amazingly this
works in general:

Theorem 1 (Implicit Function Theorem). Let F : Rn+m −→ Rm be a C1-function.
Suppose that

(~a,~b) ∈ S = { (~x, ~y) ∈ Rn+m |F (~x, ~y) = ~0 }.

Assume that

det

(
∂Fi

∂yj

)
6= 0.

Then we may find open subsets ~a ∈ U ⊂ Rn and ~b ∈ V ⊂ Rm, where U×V ⊂ Rn+m

and a function f : U −→ V such that S ∩ (U × V ) is the graph of f , that is,

F (~x, ~y) = ~0 if and only if ~y = f(~x).

where ~x ∈ U and ~y ∈ V .

Let’s look at an example. Let

F : R3 −→ R,

be the function

F (x1, x2, y) = x31x2 − x2y2 + y5 + 1.

Let

S = { (x1, x2, y) ∈ R3 |F (x1, x2, y) = 0 }.
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Then (1, 3,−1) ∈ S. Let’s compute the partial derivatives of F ,

∂F

∂x1
(1, 3,−1) = 3x21x2

∣∣∣∣
(1,3,−1)

= 9

∂F

∂x2
(1, 3,−1) = (x31 − y2)

∣∣∣∣
(1,3,−1)

= 0

∂F

∂y
(1, 3,−1) = (−2x2y + 5y4)

∣∣∣∣
(1,3,−1)

= 11.

So

DF (1, 3,−1) = (9, 0, 11).

Now what is important is that the last entry is non-zero (so that the 1× 1 matrix
(1) is invertible). It follows that we may find open subsets (1, 3) ∈ U ⊂ R2 and
−1 ∈ V ⊂ R and a C1 function f : U −→ V such that

F (x1, x2, f(x1, x2)) = 0.

It is not possible to write down an explicit formula for f , but we can calculate the
partial derivatives of f .

Define a function

G : U −→ R,
by the rule

G(x1, x2) = F (x1, x2, f(x1, x2)) = 0.

On the one hand,
∂G

∂x1
= 0 and

∂G

∂x2
= 0.

On the other hand, by the chain rule,

∂G

∂x1
=
∂F

∂x1

∂x1
∂x1

+
∂F

∂x2

∂x2
∂x1

+
∂F

∂x3

∂f

∂x1

Now
∂x1
∂x1

= 1 and
∂x2
∂x1

= 0.

So

∂f

∂x1
= −

∂F
∂x1

∂F
∂x3

.

Similarly

∂f

∂x2
= −

∂F
∂x2

∂F
∂x3

.

So

∂f

∂x1
(1, 3) = −

∂F
∂x1

(1, 3,−1)
∂F
∂x3

(1, 3,−1)
= − 9

11
,

and

∂f

∂x2
(1, 3) = −

∂F
∂x2

(1, 3,−1)
∂F
∂x3

(1, 3,−1)
= − 0

11
= 0.
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Blackboard 2. Let A ⊂ Rn be an open subset and let f : Rn −→ R be a function.
The directional derivative of f in the direction of the unit vector û is

Dûf(p) = lim
h→0

f(p+ hû)− f(p)

h
.

If û = êi then,

Dêif(p) =
∂f

∂xi
(p),

the usual partial derivative.

Proposition 3. If f is differentiable at p then

Dûf(p) = Df(p) · û.

Proof. Since A is open, we may find δ > 0 such that the parametrised line

r : (−δ, δ) −→ A,

given by r(h) = f(p) + hû is entirely contained in A. Consider the composition of
r and f ,

f ◦ r : R −→ R.
Then

Dûf(p) =

(
d(f ◦ r)
dh

)
(0)

= D(r(0)) ·Dr(0)

= Df(p) · û. �

Note that we can also write

Dûf(p) = ∇f(p) · û.
Note that the directional derivative is largest when

û =
∇f(p)

‖∇f(p)‖
,

so that the gradient always points in the direction of maximal change (and in
fact the magnitude of the gradient, gives the maximum change). Note also that
the directional derivative is zero if û is orthogonal to the gradient and that the
directional derivative is smallest when

û = − ∇f(p)

‖∇f(p)‖
.

Proposition 4. If ∇f(p) 6= 0 then the tangent hyperplane Π to the hypersurface

S = { q ∈ Rn | f(q)− f(p) = 0 },
is the set of all points q which satisfy the equation

∇f(p) · −→pq = 0.


